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This issue of SMC bulletin includes five articles dealing with (a) material processing by lasers for variety 
of applications like cutting, drilling, welding, marking, engraving etc., (b) synthesis of energy efficient 
materials using ionic liquids, (c) sugar based gel chemistry, (d) physicochemical processes in Dye sensitized 
solar cell and photoelectrochemical solar cells and (e) unique non-Debye relaxation processes. 

We hope that readers, especially SMC members will find the articles informative and useful. SMC 
members are again invited to submit their research work in the bulletin.

Editors

Editorial Note
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From the desks of the President and Secretary 

Dr. V.K. Jain 
President

Dr. P. A. Hassan 
Secretary

Dear Colleagues,

Greetings from the Executive Council of Society for Materials Chemistry (SMC).

We are happy to let you know that SMC has taken the lead in co-organising the Symposium on Selenium Chemistry 
and Biology, during November 9-11, 2017. The event was held at DAE Convention Centre, Anushaktinagar, Mumbai. 
Dr. Ratan Kumar Sinha, DAE Homi Bhabha Chair Professor and Former Chariman, Atomic Energy Comission and 
Secretary DAE delivered the inaugural address.  The Symposium was attended by a large number delegates from 
India and abroad. We are gearing for the National Workshop on Materials Chemistry (NWMC-2017) to be held during 
December 15-16, 2017 at MU-DAE centre for excellence in Basic Sciences, university of Mumbai.

SMC has been regularly publishing invited articles in SMC Bulletin, under different themes of national and 
international importance. To strengthen the dissemination of knowledge in frontier areas of materials chemistry, for the 
first time SMC Bulletin has been made open to submissions from all researchers in materials science. We are bringing out 
the first such series though this bulletin. In this issue, we bring together a compilation of articles in diverse fields ranging 
from materials processing to low molecular weight gelators, novel solvents, impedance and dielectric spectroscopy.  

The advancement in laser based methods for production/ processing of materials and its applications in biology has 
been reviewed in the lead article by Dr. S. K. Sarkar. The advent of ionic liquids as a green alternative to conventional 
solvents and its emergence as a powerful media for materials production has been reviewed.  The rationale design of 
sugar based organogelators through non-covalent interactions has been demonstrated. The importance of impedance 
spectroscopy in identifying the structure-property relationship in dye sensitised solar cells and photo electrochemical 
materials were also discussed. The role of dielectric spectroscopy in identifying structural relaxation in polymeric 
materials and other condensed matter systems have been reviewed. Overall, this compilation provides an excellent 
collection of articles highlighting recent advances in materials science and characterisation. We thank all authors for 
their sincere efforts towards contributing to SMC Bulletin. We are grateful to the Editorial Staff and Reviewers for their 
timely input. 

We extend our sincere gratitude to all our members of the society for their continued cooperation and active 
participation in SMC activities. We urge all members to submit their recent research articles to SMC Bulletin.
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Material Processing by Laser: Shifting Landscape  
Sisir K. Sarkar

National Centre for Free Radical Research, Department of Chemistry,  
Savitribai Phule Pune University, Pune-411007 

E-mail: sarkarsk@barc.gov.in / sisirchhaya@gmail.com

Abstract
The laser is a central technology within photonics having great economic impact. Laser material processing 
has blossomed into a full-scale discipline and interest is growing at an amazing rate. The successful 
application of laser material processing relies on proper choice of the laser system as well as on a good 
understanding of the science behind the process. The present article is conceptual and exemplary in nature 
and not meant as a wide coverage review. In this we first explore some conventional segments of the industry, 
namely lasers in cutting, drilling, marking, engraving etc. Then follow it up with further developments, such 
as laser shock peening, laser forming, and laser surface treatment. In recent times the market is witnessing 
a paradigm shift buoyed by advances in additive materials deposition, the proliferation of laser annealing 
for thin films, and the evolution of 3D printing for rapid prototyping. The advent of ultrashort lasers and 
their commercial availability has opened up novel applications in processing industry. Finally moving from 
materials to live tissues we present a flavor of how the laser technology has revolutionized the biological 
and medical applications as well.  In brief laser material processing have become indispensable engineering 
solutions for a large number of applications. High initial capital cost was one of the major obstacles in 
choosing the laser material processing. However, the appearance of new applications and markets for 
lasers has created strong incentives for further investment in innovation in lasers. All of this feedback and 
self-reinforcing dynamics are classic features of general-purpose technologies.

1. Introduction
In 1917 a theoretical foundation for a multibillion dollar 

industry was made. A paper on the theory of quantum 
and radiation, written by Albert Einstein an effect was 
described, which is now known as stimulated emission of 
radiation. This process is the origin of laser light and even is 
included in the name of the laser itself because LASER is an 
acronym of the following expression: Light Amplification 
by Stimulated Emission of Radiation.

It took further 43 years to realize the theoretical know 
how when the first laser was “born” on May 16, 1960. 
Theodore H. Maiman, a physicist at Hughes Research 
Laboratories, USA constructed the first laser with a 
ruby crystal, producing red light pulses at 693.4 nm. In 
1967 the first industrial applications appeared, drilling 
a hole into diamond with a ruby laser and cutting 1 mm 
thick stainless steel with a 300W CO2 laser. The drilling 
process into diamond with 4.7 mm in diameter and 2mm 
in deep was carried out in 15 minutes, which was a great 
improvement at that time because a typical application 
took about 24 hours. 

The laser is a central technology within photonics 
having great economic impact. The laser exhibits many 
of the characteristics of a “general-purpose technology” 
in that laser technology itself has been transformed by a 
series of important innovations, with numerous new types 
of lasers developed over the past 57 years. Innovations in 

lasers have broadened the applications of this technology, 
many of which have produced dramatic improvements in 
the performance of technologies incorporating lasers. It has 
revolutionized medicine, opened up communication via 
the internet, and continues to be central to linking cultural, 
economic and political aspects of the global society. 
Raising global awareness about light-based technologies 
can further provide solutions to challenges in energy, 
education, agriculture, health care and security. 

Laser material processing has blossomed into a full-
scale discipline and interest is growing at an amazing rate. 
So much so, that presently we must restrict our attention 
to the most important ideas, methods, and experimental 
results. The successful application of laser material 
processing relies on proper choice of the laser system as 
well as on a good understanding of the science behind 
the process. 

The present article is conceptual and exemplary in 
nature and not meant as a wide coverage review, which 
would require a very large space. In this we will first explore 
some conventional segments of the industry, namely lasers 
in cutting, drilling, marking, engraving etc. We will follow 
it up with further developments, such as laser shock 
peening, laser forming, and laser surface treatment. In 
recent times the market is witnessing a paradigm shift 
buoyed by advances in additive materials deposition, 
the proliferation of laser annealing for thin films, and the 
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evolution of 3D printing for rapid prototyping. The advent 
of ultrashort lasers and their commercial availability has 
opened up novel applications in processing industry. 
Finally moving from materials to live tissues we present a 
flavor of how the laser technology has revolutionized the 
biological and medical applications as well.  

2.  Back to the Basics 
Lasers are photon energy sources with unique 

properties. As illustrated in Fig.1, a basic laser system 
includes the laser medium, the resonator optics, the 
pumping system, and the cooling system. The energy 
level of the lasing medium decides the basic wavelength 
of the output beam. The lasing mediums, such as crystals 
or gas mixtures, are pumped by various methods such 
as flash lamp, electrical discharge or diode laser stack. 
Population inversion occurs when the lasing medium is 
properly pumped, and photons are generated in the optical 
resonator due to stimulated emission. The design of the 
optical resonator determines the photon energy to a very 
narrow range, and only photons within this range and 
along the optical axis of the resonator can be continuously 
amplified. The front mirror lets part of laser energy out as 
laser output. The output beam may pass through further 
optics to be adapted to specific applications such as 
polarizer, beam expander and lens, and beam scanner etc. 
Nonlinear optics may be used to change the wavelength, 
for example, the basic optical frequency of the neodymium-
doped yttrium aluminum garnet (Nd:YAG) laser at 1.06 
µm wavelength may be doubled or tripled by inserting 
nonlinear crystals in the resonator cavity, generating the 
wavelengths of 532 nm and 355 nm.

free electrons first, the absorbed energy propagates through 
the electron subsystem, and then is transferred to the lattice 
ions. In this way laser energy is transferred to the ambient 
target material, as illustrated by Fig.2. 

Fig.1: Illustration of a basic laser system.

Understanding the physics in laser material interaction 
is important for realizing the capabilities and limitations 
of these processes. When a laser beam strikes on the target 
material, part of the energy is reflected, part of the energy 
is transmitted and part of it is absorbed. The absorbed 
energy may heat up or dissociate the target materials. From 
a microscopic point of view the laser energy is absorbed by 

At high enough laser intensities the surface 
temperature of the target material quickly rises up 
beyond the melting and vaporization temperature, 
and at the same time heat is dissipated into the target 
through thermal conduction. Thus the target is melted 
and vaporized. At even higher intensities, the vaporized 
materials lose their electrons and become a cloud of 
ions and electrons, and in this way plasma is formed. 
Accompanying the thermal effects, strong shock waves 
can be generated due to the fast expansion of the vapor/
plasma above the target.  

Given the laser pulse duration, one can estimate the 
depth of heat penetration, which is the distance that heat 
can be transferred to during the laser pulse: D =  [ 4 x α 
x tp] ½ where D is the depth of heat penetration, α is the 
diffusivity of materials, and tp is the pulse duration. Laser 
energy transmission in target material is governed by 
Lambert’s law:   

I(z) = I0 . [exp ( - a . z )

where I is laser intensity, I0 is the laser intensity at 
the top surface, z is the distance from the surface, and a is 
the absorption coefficient that is wavelength dependent. 
Metals are nontransparent to almost all laser wavelengths 
and a is about 100,000 cm-1, which implies that within a 
depth of 0.1 μm, laser energy has decayed to 1/e of the 
energy at the surface. Many nonmetals such as glasses 
and liquids have very different a values. Laser-material 
interaction thus can be surface phenomena when the laser 
pulse duration is short and when the material has rich 
free electrons. Laser energy may also be absorbed over a 
much larger distance in nonmetals than in metals during 
its transmission.  

 Fig. 2: Laser energy absorption by target material.



3

SMC Bulletin Vol. 8 (No. 1) April 2017

When considering the laser power in material 
processing, the effective energy is the portion of energy 
actually absorbed by the target. A simple relation for 
surface absorption of laser energy is:  A = 1 - R - T where 
A is the surface absorptivity, R is reflection, and T is 
transmission. For opaque material, T = 0, then A = 1 - R 

It’s important to understand that reflection and 
absorption are dependent on surface condition, wavelength, 
and temperature. For example, copper has an absorptivity 
of 2 percent for CO2 lasers at 10.6 μm, but it has much higher 
absorptivity of about 60 percent for UV lasers. Absorption 
usually increases at elevated temperatures because there 
are more free electrons at higher temperatures.  

3. Analysis of Material Processing System  
Laser material interaction can be very complex, 

involving melting, vaporization, plasma and shock wave 
formation, thermal conduction, and fluid dynamics. 
Modeling gives the in-depth understanding of the physics 
in the study of laser material processing. Without going 
into the modeling, but as a manager or process engineer, 
one can get a relatively complete picture following the four-
factors analysis: time, spatial, frequency and magnitude.

Time attribute:  Laser energy may be continuous 
(CW) or pulsed, and laser energy can be modulated or 
synchronized with motion. For CW lasers, the average 
laser power covers a wide range, from several watts to 
over tens of kilowatts, but their peak power may be lower 
than pulsed lasers. CW lasers may be modulated such 
as ramping up or ramping down the power, shaping the 
power, or synchronizing the on/off of the shutter with the 
motion control of the system. For a CW laser one should 
understand its capability of power modulations, focusing 
control, and energy-motion synchronization.  

There are many types of pulsed lasers. The common 
range of pulse duration is in the ms range, and the smallest 
pulse duration is normally larger than 1 µs. The major 
purpose of pulsating the laser energy in laser material 
processing is to produce high peak laser power and to 
reduce thermal diffusion in processing. Taking Q-switched 
solid-state lasers for example, lasing condition of the cavity 
is purposely degraded for some time to accumulate much 
higher levels of population inversion than continuous 
mode, and the accumulated energy is then released in 
a very short period - from several tens to hundreds of 
nanosecond (10-9 s). Even shorter pulse durations can be 
achieved with other techniques and their application will 
be discussed later. Pulsed lasers have wide range of pulse 
energies, from several nJ to over 100 J. These pulses can be 
repeated in certain frequencies called the repetition rate. 

For pulsed lasers, basic parameters are the pulse duration, 
pulse energy, and repetition rate. From these parameters, 
peak power and average power can be calculated. Similar 
to CW lasers, one should also understand the capability of 
power modulations, focusing control, and energy motion 
synchronization for pulsed lasers. Peak laser intensity 
is the pulse energy divided by pulse duration and spot 
irradiation-area. Due to several orders of pulse duration 
difference, pulsed laser can achieve peak laser intensities 
>>108 W/cm2, while CW lasers normally generate laser 
intensities <108 W/cm2.

Spatial attribute:  Laser beam out of a cavity may 
have one or several modes, which are called transverse 
electromagnetic mode (TEM). For laser material processing, 
we are concerned with the spatial distribution of the beam 
that affects the thermal field on the target. Laser intensity 
usually has a Gaussian beam distribution. For Gaussian 
beam with beam radius r and for a material with absorption 
A = 1 - R, where R is the reflectivity and P(t) is the time 
dependent laser power, the spatial distribution of absorbed 
laser intensity on the target surface is: 

I(x, y, t) = (1 -  R) I0(t) exp [ - ( x2 + y2 ) / r2 ]

Where I0(t) = 2P(t) / πr2, is the average laser intensity. 
Laser energy distribution may take other shapes, such as 
flat-hat shape, in which the laser intensity at the center 
is uniform. In general, the formula for laser energy 
transmitted to the material at depth z is: 

I(x, y, z, t) = A x I0(t) x exp ( -az ) SP(x, y)

where A = fraction of laser energy absorbed by the 
material at the surface,  I0(t) = temporal distribution of 
laser intensity  a = absorption coefficient and SP = spatial 
distribution of laser intensity. Special optics can be used 
to change the beam shape and spatial distribution. For 
example, the beam can be changed from circular to square 
and uniform. 

Laser beam radius is normally defined as the distance 
from the beam center within which 86.4% or (1 - 1/e2) of 
total energy is included. Beam radius at the focus is called 
the focused spot size. For lower intensities, laser energy 
profiler can be used to directly measure the intensity 
distribution. The laser beam size close to the focus is usually 
difficult to measure directly, especially for cases when the 
focused spot size is below tens of microns or when the 
laser power is high. One solution for high-power lasers 
is to measure the diameter of laser burnt holes in suitable 
thin sheet material. For a Gaussian beam, a more accurate 
solution is to combine experimental measurements with 
optical calculations. The spot size at large defocus can be 
measured either by the profiler or the knife-edge method. 



SMC Bulletin Vol. 8 (No. 1) April 2017

4

More than three measurements at different locations are 
measured to obtain (Zn, Dn), n = 1, 2, 3… where Dn is the 
beam size at location Zn. The propagation of laser beams 
in air satisfies the following equation:

 Dn
2 = D0

2 + [ 4M2 λ / π ]2 [ (Zn – Z0 )2 / D0
2 ] ; n = 1,2,3…

Where D0 is the beam waist, Z0 is the beam waist 
location, and M2 is the beam quality parameter. Knowing 
(Zn, Dn), D0, Z0, and M2 can be determined. Then one can 
calculate the spot size at any location along the optical axis. 
Knowing M2, one can also calculate the beam divergence 
and depth of focus (DOF). Depth of focus is the range of 
distance over which the spot size changed from the focused 
spot size by 5 percent. Fig.3 illustrates the propagation, the 
beam waist, and the DOF of laser beam.

Laser material processing is claimed to be noncontact 
because the highest intensity is at the focus while laser 
optics are some distance away from the target. It is not 
always convenient to change the focus in processing. The 
limited depth of focus limits laser machining to relatively 
thin materials (usually < 15 mm). In material processing, 
one can move the beam while keeping the part fixed, or 
move the part on a stage while keep the beam fixed, or move 
both of them. An XY or XYZ motorized stage is commonly 
used. Laser beams can be quickly scanned across specified 
locations by computer controlled reflection optics. This 
makes high-speed marking or drilling possible. The spatial 
resolution of laser material processing is influenced by the 
focused spot size. Shorter wavelength lasers are thus used 
for precision machining tasks. 

is the focus length, λ is wavelength, and D is the unfocused 
beam diameter. Thus for high-precision applications, 
shorter wavelength lasers are preferred. UV laser ablation 
of organic polymers can be very different in mechanism 
compared to infrared or visible laser ablation. The 
infrared and visible laser ablation is mainly photothermal 
degradation, while UV laser ablation may involve direct 
photo-chemical dissociation of the chemical bonds.  

Materials show very different absorption properties at 
different wavelengths. Metals tend to have low absorption 
at far infrared (CO2 laser 10.6 µm) while absorption 
increases with decreasing wavelength. Nonmetals such 
as ceramics and liquids have strong absorption at far 
infrared, much lower absorption at visible wavelengths, 
and increased absorption at UV. At deep UV, almost any 
material has very strong absorption. That’s why different 
materials may need to use lasers at different wavelengths 
for efficient energy coupling.  Absorption also depends 
on temperature, purity, and surface condition. Defects or 
impurity in a transparent media may strongly absorb laser 
energy and thus create a local thermal point and finally 
break down the transparent condition. At high enough 
laser intensity, multiphoton absorption may occur, material 
reacts nonlinearly to the irradiation. Once the surface 
temperature rises, absorption tends to increase, which 
forms a positive feedback. In this meaning, very high laser 
intensity may be regarded as wavelength-independent 
material processing.  

Magnitude attribute:  Major magnitude parameters of 
laser energy are power (watt), pulse energy (Joule), and 
intensity (unit: W/m2 or W/cm2). The average power of 
laser is relatively low compared to other energy sources: 
over 1 kW is regarded as high-power, and a pulsed laser 
normally has an average power < 100 W. The characteristics 
of laser radiation is that it can have very high local energy 
intensity, and this intensity can be well controlled in time, 
space, and magnitude. When the interaction between laser 
and target is not continuous, energy intensity is usually the 
deciding factor. Depending on the laser type, laser pulse 
energy can be varied from below 10-9 J to well above 1 J, the 
spot size can be varied from sub-microns to over 10 mm, 
and pulse duration can be varied from several femtosecond 
(fs = 10-15 s) to over 1 s. For pulsed lasers, the laser intensity 
is equal to E0 / ( tp x πr2 ) where E0 is pulse energy, tp is pulse 
duration, and r is beam radius. For laser pulse energy of 
0.1 J, if the pulse repetition rate can vary in the range from 
1 Hz - 4 kHz, then the average power is 0.1 - 400 W. Let’s 
vary the pulse length and the acting area and compute the 
peak intensity. With r = 0.5 μm, peak intensity of a 10 fs 
pulse is 1022 W/cm2, the intensity of a µs pulse is 107 W/

Fig. 3: The DOF of laser light

Frequency attribute:  The characteristic frequency of 
energy field is important because materials may respond 
very differently to energy fields at different frequencies. 
The frequency decides the individual photon energy of 
the laser beam. Lasers usually have very narrow spectral 
width, while other energy sources typically have broad 
and complex spectral distributions. The diffraction limited 
spot size is proportional to wavelength and for circular 
beams, the focal spot size is: Dmin = 2.44 f x  λ / D, where f 
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Fig. 4: Processing map based on power density and interaction time

Table 1: Applications of Lasers in Material Processing

Applications Intensity (W/cm2) and laser material interaction
Laser surface transformation  hardening, 
laser forming,  laser assisted machining, 
etc.

< 105 W/cm2, target heated below melting temperature, phase   transformation 
may occur that can harden the material, elevated temperature can soften 
the material. Pulse duration >10- 3 s, CW  lasers are used

Laser welding, laser cladding  and alloying, 
rapid tooling,  and laser machining  

From 106 W/cm2 to 108 W/cm2, material melts, some vaporization and 
plasma formation possible. Pulse duration >10 -3 s, CW  lasers are used

Higher intensity laser machining like  
marking, grooving, drilling, and  cutting

From 107 W/cm2 to 109 W/cm2, material melts and strong vaporization 
occurs, shock wave and plasma formation possible. Pulse duration  normally 
< 10-3 s,  10-9 to 10-6 s pulse duration are common, while  for micromachining 
even shorter pulses are used. CW lasers or pulsed lasers are used. 

Laser shock processing, laser  surface 
cleaning  

Intensity > 109 W/cm2 and pulse duration <10-7 s, very intense surface 
vaporization induces strong shock pressure toward the target. 

cm2 and the intensity of a ms pulse is only 104 W/cm2. It 
is clear that laser intensity can be flexibly controlled over 
very wide range.  

Depending on the absorbed laser intensity, different 
physical phenomena are involved. Applications at various 
laser intensities and deposition times are briefly shown in 
Fig. 4 and Table 1

Many material properties such as thermal conductivity 
and reflectivity vary with material temperature and state, 
which are further decided by the magnitude of energy 
input. We tacitly assume that only one photon is absorbed 
by one electron at a specific time at normal laser intensities, 
but when the laser intensity is extremely high as in the case 
of ultrafast lasers (pulse duration <10-12 s), more than one 
photon can be absorbed by one electron simultaneously. 
This is termed as multiphoton absorption. Material optical 
property is then highly nonlinear and is very different 
from single photon absorption. Material can act as if it 

were irradiated by a frequency doubled or tripled laser 
source. In this meaning, we can say that extremely high 
magnitude of laser intensity can be equivalent to shorter 
wavelengths.  From the above discussion it is seen that 
four attributes analysis is quite useful. However, caution 
should be used when collecting the material properties 
from literature. In laser material processing, material 
properties are highly temperature, wavelength, geometry, 
and intensity dependent.

4. Application areas
A laser material processing system consists of the 

laser source, the beam delivery system, the motion and 
material handling system, and the process control system. 
Some systems may integrate the sensing unit to improve 
process quality. The individual laser material interaction 
for specific jobs are discussed below ( Fig. 5).

4.1 Laser Drilling
Laser drilling is one of the oldest applications of 

laser machining processes. It is a process by which 
holes are formed by the removal of material through 
laser-material interaction. Graduating from drilling 
hole in diamonds, nowadays, it has found successful 
applications in automobile, aerospace, electronic, 
medical, and consumer goods industries. A well-known 
example of laser drilling is the drilling of airfoil cooling 
holes of aircraft engines. 

Fig. 5: Various application areas
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Lasers used for drilling require higher laser intensities 
than in laser cutting. With finite pulse energy, high laser 
intensity can be achieved by tight focus and by short pulse 
duration. Normally pulsed Nd:YAG lasers or pulsed 
CO2 lasers are used. Similar to laser cutting, CO2 lasers 
are better fit for nonmetals and Nd:YAG lasers are better 
suited for metals. The laser pulse duration is normally 
less than 1 ms. Average power of the laser may not be as 
high as that used in laser cutting, but the achievable laser 
intensity is higher than laser cutting due to shorter pulse 
duration and smaller spot size. Lasers can be used to drill 
very small holes with high accuracy and high repeatability. 
The diameters of holes range from several microns to 
about 1 mm. For extremely small diameter holes, tighter 
focus is needed and green or UV lasers, such as frequency 
doubled or tripled Q-switched Nd:YAG lasers, are used.  
When the pulse duration is short and the pulse repetition 
rate is high, laser can drill when the part is moving. Thus 
very high drilling speed is possible.

4.2 Laser Cutting
Important process parameters in laser cutting are: 

power, spot size, stand-off distance, focus position, 
scanning speed, gas pressure, gas flow rate and direction, 
and gas composition. The quality of laser cutting depends 
on both the material and the laser. With suitable control 
of the process parameters, high quality cutting can be 
achieved. 

The lasers used in laser cutting are mainly CO2, 
Nd:YAG, and excimer lasers. Industrial lasers for cutting 
typically have power levels from 50 W to 5 kW, although 
higher powers are used to cut thick sections. Because CO2 
lasers have higher average powers with cheaper cost-
per-watt and they also have an early history of success 
in industrial laser cutting, today the majority of cutting 
operations are carried out by CO2 lasers, especially for 
nonmetals which have better absorption at far infrared 
wavelength. Nd:YAG laser has shorter wavelength, smaller 
focused spot size, and is better absorbed by metals than 
CO2 lasers. Multikilowatt YAG lasers are commercially 
available and they usually are delivered by fibers. All 
these factors lead to the increasing popularity of YAG 
lasers in industrial laser cutting, especially for metals. 
Excimer lasers emitting in the ultra-violet (193 nm: ArF, 
248 nm :KrF or 308 nm: XeCl)  lasers are strongly absorbed 
by both metals and nonmetals, the spatial resolution are 
higher than visible and infrared lasers, and thus they are 
mainly used for high-precision laser cutting, especially 
for polymers and semiconductors. Recently, conventional 
lasers using diode pumping and direct diode lasers are 
reducing their size and increasing their average power 

quickly, which may change the dominant role of bulky 
conventional lasers in industrial laser cutting. 

In laser micromachining, a much wider variety of lasers 
with short pulse durations and high pulse repetition rates 
are used, such as frequency doubled (Green 532 nm) and 
tripled (UV 355 nm) Nd:YAG laser, copper vapor lasers, 
ultrashort pulsed lasers, and excimer lasers. The shorter 
wavelength and shorter pulse duration helps to increase 
spatial resolution and reduce the heat affected zone in laser 
cutting. The higher pulse repetition rate at smaller pulse 
energy makes it easier to get a smoother machined edge. 
But the average power of these systems is much lower than 
industrial lasers, typically < 50 W. High-power industrial 
lasers are commonly used to cut through larger thickness 
parts with sufficient speed while micromachining lasers are 
used to generate small features with high precision.

4.3 Laser Marking and Engraving
 Laser marking is a thermal process that creates 

permanent contrasting marks in target materials by 
scanning or projecting intense laser energy onto the 
material. In some cases, the a shallow layer from the target 
is removed to make the marks, while in other cases, strong 
laser irradiation can create a color contrasting from non-
irradiated area. Lasers are also used to engrave features into 
materials such as wood or stone products. Laser marking 
holds around 20% market share of all laser applications 
and represents the largest number of installations among 
all laser applications. Lasers can mark almost any kind of 
material and used for showing production information, 
imprinting complex logos, gemstone identification, 
engraving artistic features etc. Lasers used for marking and 
engraving are mainly pulsed Nd:YAG, CO2 and excimer 
lasers. 

In general, there are two fundamental marking 
schemes: one is marking through beam scanning or direct 
writing, and the other is marking through mask projection. 
In beam scanning or direct writing method, the focused 
laser beam is scanned across the target, and material is 
ablated as discrete dots or continuous curves. In the mask 
projection method, a mask with desired features is put 
into the laser beam path. Laser energy is thus modulated 
when it passes through the mask and a feature is created 
on the target. The mask can contact the target directly or 
can be away from the target and be projected onto the 
target by optics. This method has been used in IT industry 
to produce very minute and complex features with the 
assistance of chemical etching. Beam scanning marking 
has more flexibility than mask projection marking while 
mask projection marking can be much faster than beam 
scanning marking. 
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5. More Applications
We have seen already that laser energy is flexible, 

accurate, easy to control, and has a wide range of freedom 
in spatial, temporal, magnitude, and frequency of laser. In 
this section, we will present some important applications 
other than the more well-known processes like cutting, 
drilling etc. described already. 

5.1 Laser Forming
When a laser beam scans over the surface of the metal 

sheet and controls the surface temperature to be below the 
melting temperature of the target, laser heating can induce 
thermal plastic deformation of the sheet metal after cooling 
down without degrading the integrity of the material. 
Depending on target thickness, beam spot size and laser 
scanning speed, three forming mechanisms or a mixture 
of the mechanisms can occur. The three mechanisms 
are the temperature gradient mechanism, the buckling 
mechanism, and the upsetting mechanism. Lasers used 
in laser forming are high-power CO2, Nd:YAG and direct 
diode lasers.  

Laser forming (LF) of sheet metal components and 
tubes requires no hard tooling and external forces and 
therefore is suited for die-less rapid prototyping and low-
volume, high-variety production of sheet metal and tube 
components. It has potential applications in automobile, 
shipbuilding, aerospace and other industries. It can also be 
used for correcting and repairing sheet metal components 
such as pre-welding “fit-up” and post-welding “tweaking.” 
Laser tube bending involves no wall thinning, little ovality 
and annealing effects, which makes it easier to work on 
high work-hardening materials such as titanium and nickel 
super-alloys. LF offers the only promising die-less rapid 
prototyping method for sheet metal and tubes. 

5.2 Laser Hardening
In laser hardening, a laser beam scanning across 

the metal surface can quickly heat up a thin top layer of 
the metal during laser irradiation without melting, and 
after the irradiation it quickly cools down due to heat 
conduction into the bulk material. This is equivalent to 
the quenching process in conventional thermal treatment. 
When favorable phase transformation occurs in this laser 
quenching process, such as in the case of carbon steels, the 
top surface hardness increases strikingly. Multi-kilowatt 
CO2 lasers, Nd:YAG lasers, and diode lasers are commonly 
used. The hardened depth can be varied up to 1.5 mm and 
the surface hardness can be improved by more than 50%. 
Laser hardening can selectively harden the target, such as 
the cutting edges, guide tracks, grooves, interior surfaces, 
dot hardening at naps, and blind holes. The neighboring 

area remain uninfluenced during laser hardening. By 
suitable overlapping, a larger area can be treated. 

5.3 Laser Glazing
In laser glazing, the laser beam scans over the surface 

to produce a thin melt layer while the interior of the work 
piece remains cold. Re-solidification occurs very rapidly 
once the laser beam passes by, thus the surface is quickly 
quenched. As a result, a surface with special microstructure 
is produced that may be useful for improved performance 
such as increased resistance to corrosion. The surface layer 
usually has finer grains and may even be amorphous. 
Laser glazing of cast iron and aluminum bronze has 
demonstrated much enhanced corrosion resistance. 

5.4 Laser Cladding
Laser cladding normally involves covering a relatively 

low performance material with a high-performance 
material in order to increase the wear resistance and 
corrosion. In laser cladding, the overlay material is spread 
over the substrate or continuously fed to the target surface. 
Laser beam melts a thin surface layer and bonds with 
the overlay material metallurgically. The difference with 
laser alloying is that the overlay material doesn’t intermix 
with substrate. Cladding allows the bulk of the part to be 
made with low cost material and coat it with a suitable 
material to gain desired properties and good surface finish. 
Compared to conventional cladding processes, such as 
plasma spraying, laser cladding has the advantage of low 
porosity, better uniformity, good dimensional control, and 
minimal dilution of the cladding alloy. 

5.5 Laser Shock Peening
High intensity ( > GW/cm2 ) laser ablation of materials 

generates plasma that has high temperature and high 
pressure. In open air, this pressure can be as high as sub 
GPa and the expansion of such high-pressure plasma 
imparts shock waves into the surrounding media. With the 
assistance of a fluid layer which confines the expansion of 
the plasma, 5 to 10 times stronger shock pressure can be 
induced. This multi-GPa shock pressure can be imparted 
on to the target material and the target is thus called laser 
shock peened (LSP). 

Laser shock processing can harden the metal surface 
and induce in plane compressive residual stress distribution. 
The compressive residual stress refrains from crack 
propagation and greatly increases the fatigue life of treated 
parts. Compared to mechanical shot peening, LSP offers 
a deeper layer of compressive residual stress and is more 
flexible, especially for irregular shapes. It has been shown 
that LSP can improve fatigue life of aluminum alloy by over 
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30 times and increase its hardness by 80%. Materials such 
as aluminum and aluminum alloys, iron and steel, copper, 
and nickel have been successfully treated. Laser shock 
processing has become the specified process to increase 
the fatigue lives of aircraft engine blades. 

Conventional laser shock processing requires laser 
systems that can deliver high pulse energy (~50 J) with 
very short pulse duration (~50 ns) with a Q-switched 
Nd:YAG laser. Such laser systems are expensive and the 
repetition rate is low (several pulses per minute). This 
situation is improving with more cheaper high-power 
systems becoming commercially available. On the other 
hand, this technique can be extended to low pulse energy 
lasers with short pulse duration and tight focus. Two 
key requirements for a successful processing are laser 
intensity > GW/cm2  and short enough pulse duration (< 
50 ns). It is shown that the copper sample treated by a 
UV laser with 50 ns pulse can be increased by more than 
300 percent efficiency. 

5.6 Recent Applications
There are many other laser material processing 

applications in which difficult problems are solved by 
lasers, such as laser assisted machining of super-alloys 
and ceramics, laser assisted etching, laser surface cleaning, 
and laser coating removal. In laser assisted machining, 
laser is used to locally heat the work material prior to 
the cutting tool in an attempt to improve machinability 
of difficult-to-machine materials such as supper alloys 
and ceramics. It has been experimentally shown that laser 
assisted machining can extend the tool life, increase the 
removal rate, and also improve the surface quality of the 
machined surface. 

Etching rate is sensitive to temperature, thus laser 
beam can be used to enhance etching rate locally. This is 
in fact one way of direct writing. With the combination of 
laser heating and chemical etching, semiconductor devices 
can be etched 10 to 100 times faster than conventional 
procedures. Laser induced shock wave can be used to clean 
very minute particles on a silicon wafer, and laser ablation 
has also been used to remove rust or peel-off coatings by 
affecting a very thin surface layer.  

6. Shifting of Landscape
Buoyed by advances in additive materials deposition, 

the proliferation of laser annealing for thin films, and the 
evolution of 3D printing for rapid prototyping, the laser 
materials processing market in recent times is undergoing 
seismic change - not only in Europe but in APAC countries 
such as India, Japan, South Korea and China. Fig 6 shows 
the materials processing accounts for a significant share of 

the total laser market in research compiled by European 
Photonics Industry Consortium (EPIC).

High-power lasers dominate the materials processing 
sector. The umbrella of mature power is broad and complex 
– nanosecond, picosecond or femtosecond; ultraviolet, 
green or infrared; CO2, diode-pumped solid-state (DPSS) 
lasers and fiber lasers. Now the criical question is if 
there is a key laser that can be customized to cover many 
applications or if there is only a laser suitable for each of 
the applications. There’s no easy answer; it’s basically 
a combination of choosing the right laser and right 
application-specific customization. 

In essence, laser materials processing has consisted 
traditionally of the subtractive: that is, materials are 
removed from the work piece. Laser additive processing, 
otherwise known as 3D printing, is a complement to these 
operations. For a number of years, laser additive processing 
was regarded as an artistic curiosity. However, according 
to internal market research done by EPIC, it is now an 
important contributor to the laser systems market, and 
generated 13% of total revenues in 2014. Furthermore, laser 
additive processing has grown 20% per year for several 
years. It is estimated that it will contribute 30% of laser 
system revenues by 2020. 

6.1 Rapid prototyping and additive manufacturing
Rapid prototyping is used in applications where design 

prototypes or a low volume of complex parts are required to 
be fabricated quickly without the need of complex tooling. 
The process is differentiated between stereo-lithography 
(SLA) using an epoxy polymer and selective laser melting 
(SLM) using metal or ceramic powder. In both the SLA and 
SLM processes, a 3D CAD model is sliced into many layers 
like a stack of cards, then transferred to the SLA or SLM 
tool. The laser beam is steered by a galvanometric scanner 
head and builds up the part layer by layer. After each layer 
is processed, polymer or powder is then deposited on 

Fig. 6:  Materials processing accounts in the total laser market
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top of the part and the next laser processing step begins. 
SLA typically uses a low-power UV wavelength laser to 
selectively harden a photosensitive epoxy polymer in a 
bath to form a part. SLM builds up a part from polymer 
or metal powder by using a sealed- off CO2 laser or a 1-µm 
fiber laser. The scope of EPIC is to keep communicating 
to potential users in the automotive, avionics, consumer 
electronics, medical, jewelry and many more sectors. It is 
through addressing the unmet needs of those applications 
that the technology can develop. 

7. Ultrafast laser processing of materials
Ultrafast lasers have been developed for quite some 

time and are becoming more user-friendly and cost-
effective. While laser researchers continue to advance 
beyond the attosecond (1 as = 10-18 s) regime presently, the 
lasers in the femtosecond, picosecond and nanosecond time 
regimes have been used to interact with and characterize 
hosts of different materials. Compared with longer 
pulse widths, ultrafast pulses are unique in that they are 
characterized by incredibly high peak intensities and 
interact with materials on a timescale faster than lattice 
disorder and heat diffusion. These two features allow 
ultrafast lasers to control and manipulate the states of 
materials very precisely. 

Ultrafast lasers in micromachining have been 
expanding exponentially due to their flexibility, speed, 
and precision. Picosecond and femtosecond lasers are 
now widely used for applications where conventional 
solid-state lasers cannot be appropriately applied, such 
as micro scale surface texturing, cladding, and selective 
material removal. These novel processing methods are 
being utilized to manufacture everything from energy-
production devices to state-of-the-art electronics.

Fig 7 shows the schematic of beam stretching, 
amplifying, and compressing system used in chirped 

pulse amplification. This process is one of the 
breakthroughs that enabled the creation of ultrafast 
lasers.

The fs-pulse dictate the kinetics of melting and re-
solidification of material. Upon fs-pulse irradiation, the 
semiconductor experiences several regimes of excitation 
and relaxation, before returning to its original equilibrium 
state. The four regimes are (i) carrier excitation, (ii) 
thermalization (iii) carrier removal, and (iv) thermal and 
structural effects. Due to the nature of ultrafast pulses, let 
us have a look at the resulting differences when compared 
to shorter, ns laser pulses. The fs-laser pulses generate 
large peak electric fields, which are orders of magnitude 
larger than the 109 V∕m coulomb fields that bind electrons 
to atoms. Large peak pulse energies cause nonlinear 
absorption in short absorption depths from the irradiated 
surface, which limits the focal volume where laser energy 
is deposited.

The dynamics of sub-ps-pulse interactions with 
semiconductors are unique in two ways. First, the pulse 
delivers energy to the material on a timescale shorter 
than the electron–phonon coupling relaxation time. The 
incident pulse only delivers energy to the electrons, 
leaving the ions completely “cold.” Thermal energy 
transfer to the lattice only takes place once the pulse is 
turned off. Thus, decoupled optical absorption and lattice 
thermalization processes uniquely characterize sub-ps 
pulse-semiconductor interactions. Second, extremely short 
pulse widths in time translate to very high peak intensities 
that can drive nonlinear and multiphoton absorption 
processes.

Nanosecond pulses excite electrons in a distinctly 
different process as discussed earlier. When a ns pulse 
delivers energy to a material, excited electrons transfer 
energy to the lattice during the time of the electron 
excitation. Electrons and the lattice thus remain in 
equilibrium throughout the excitation process. The ns 
laser heats the solid to its melting temperature during 
the length of the laser pulse. The ns absorption processes 
are linear with a much larger absorption length than fs 
absorption. Linear absorption can lead to deeper melt 
depths. Compared to the fs-laser case, the ns-induced 
temperature gradient between the molten layer and the 
solid substrate is smaller and distributed over a longer 
distance. Consequently, the melt duration is longer, 
and the re-solidification front speed is slower, which for 
silicon typically yields a crystalline structure. If the laser 
wavelength is transparent to the material, absorption is 
induced by multiphoton absorption for both ultrafast and 
ns lasers. Then the ns laser will have a longer penetration Fig.7: Schematic of ultrashort pulse laser
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depth due to a smaller absorption cross section as compared 
with an ultrafast laser. 

In contrast, for the opaque materials, the penetration 
depth is determined by the absorption coefficient due to 
single-photon absorption for both lasers. In the case of a 
small absorption coefficient, a shorter penetration depth of 
the ultrafast laser may be obtained due to a combination 
of linear and nonlinear absorption. The longer ns-pulse 
widths translate to lower peak powers compared to fs 
lasers. Operating at lower peak powers, ns lasers ablate 
materials by a thermal process. This thermal ablation 
causes a large heat-affected zone that may induce melt 
re-deposition and shockwaves, leaving behind thermally 
induced defects such as cracks and chipping. It should 
be mentioned that fs lasers are also used as material 
characterization tools, and many other studies detail 
their uses in fs pump-probe spectroscopy, laser-induced 
breakdown spectroscopy (LIBS), and surface-enhanced 
Raman spectroscopy (SERS).

8. Interaction of the laser with living tissue
Now we will shift our attention from materials to live 

tissues  and in this section we will present a flavor of the 
phenomenal growth of biological and medical applications 
of laser. Lasers have been seen as potentially useful light 
sources for medical applications, because they have three 
characteristics which distinguish them from conventional 
light sources: their directivity, the ability to use them in 
pulsed mode, and their monochromaticity. Directivity 
allows the transmission of light with the aid of an optical 
fibre of small diameter (50 to 600 µm). Pulsed mode 
operation from milliseconds to femtoseconds (10-3 to 10-15 
s) deliver extremely high instantaneous power (109 W) with 
different tissue effects than one obtains with continuous 
exposures. 

8.1 Thermal effects of a laser beam
The thermal effect of lasers on biological tissue 

is a complex process resulting from three distinct 
phenomena; conversion of light to heat, transfer 
of heat and the tissue reaction, which is related to 
the temperature and the heating time (Fig. 8). This 
interaction leads to denaturation or to the destruction 
of a volume of tissue. The important factors are the 
laser parameters (wavelength, power, time and mode 
of emission, beam profile and spot size) and the tissue 
being treated (optical coefficients, thermal parameters 
and coefficients of the reaction of thermal denaturation). 
Depending on the intertwining interaction following are 
the various effects of lasers on tissues:

(i)	 Creation of the heat source 

	 The source of heat results from conversion of laser 
light to heat. The optical reflection determines what 
proportion of the beam will effectively penetrate the 
tissue. Precise knowledge of the tissue reflectivity is 
important because it can reach high levels (30 to 50% 
reflection of Ar+- laser beam by the skin). However, for 
wavelengths longer than the visible range, reflectivity 
is considerably reduced.

	 Optical scattering is an interaction of light as it passes 
through matter, in which the direction of the incident 
rays is changed by molecules or small particles present 
in the medium. Scattering plays an important role in the 
spatial distribution of absorbed energy. At the longer 
wavelengths (red and near infra-red) where the light is 
absorbed less, the beam is more penetrating (ignoring 
scattering effects).

	 Chromophores are light-absorbing substances within 
tissue and the absorption is a function of wavelength 
and chromophore (Fig. 9). Most organic molecules 
exhibit strong absorption in the ultraviolet region, and 
so penetration in the UV is very weak (a few microns). 
In the visible (blue, green and yellow), absorption is 
principally due to hemoglobin and melanin. Red and 
near infra-red (600 to 1200 nm) wavelengths are weakly 
absorbed and penetrate deeply into the tissue (this 
penetration is, however, limited by optical scattering). 
In the near and far infra-red, it is water which absorbs 
intensely, and laser light then has very superficial 
effects. It is the conversion of light absorbed to heat 
which produces what we may call “primary” heat.

Fig. 8: The three distinct phenomena of thermal effects
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	 It has been found that laser light at 970 nm is important in 
biological / medical applications. A laser’s wavelength 
determines many of its properties and capabilities 
because different wavelengths are absorbed by tissue 
at varying rates. Since tissue composition (amongst 
others) is water-hemoglobin-melanin and soft tissue 

contains a high percentage of water (around 70%), it has 
a major impact for ablating soft tissue with a laser. The 
absorption in water is: 3% for 810 nm; 15% for 1064 nm; 
35% for 980 nm Absorption in hemoglobin is imperative 
for good coagulation and successful hemostasis. Table 
2 lists various endogenous (naturally occurring) and 
exogenous (added from outside) chromophores, 
and their main absorption wavelengths which are of 
importance in photo medicine.

(ii)	Heat transfer mechanisms

	 The transfer of heat through tissues will tend to enlarge 
the volume of this source of “primary” heat. This 
transfer is essentially produced by the mechanism of 
conduction; the influence of blood circulation (transport 
by convection) is negligible. Conduction may be 
considered to be like a transfer of energy by interaction 
with tissue particles. This transfer occurs randomly 
between the more and the less energetic particles and 
results in a “secondary” heated volume which is bigger 
than the “primary” source which is based only on the 

Fig. 9: Absorption spectrum of the main chromophores in tissues 

Table 2: Absorption features of various endogenous and exogenous chromophores
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conversion of light to heat. It is this “secondary” heated 
volume which should be considered when studying the 
denaturation of tissue. 

(iii)		Mechanism of tissue denaturation

	 Denaturation of tissue is the final result of thermal 
action on tissue. Knowledge of the kinetics of this 
transformation is necessary to describe the process 
of denaturation. These kinetics depend on the 
temperature in the tissue, on the heating time and on 
the susceptibility of the tissue to thermal damage.

(iv)	Thermal action of a laser 

	 Thermal action of a laser beam can be described as 
one of three types, depending on the degree and the 
duration of tissue heating:
Hyperthermia: meaning a moderate rise in temperature 

of several ºC, corresponding to temperatures of 41to 
44ºC for some tens of minutes and resulting in cell death 
due to changes in enzymatic processes. This is a difficult 
procedure to control and so it is little used in practice.

Coagulation: refers to an irreversible necrosis without 
immediate tissue destruction. The temperature reached 
(50 to 100º C) for around a second, produces desiccation, 
blanching, and a shrinking of the tissues by denaturation 
of proteins and collagen.

Volatilization: means a loss of material. The various 
constituents of tissue disappear at above 100ºC, in a 
relatively short time of around one tenth of a second. At 
the edges of the volatilization zone there is a region of 
coagulation necrosis which is a gradual transition between 
the volatilization and healthy zones. The haeomstatic 
effect is due to this region of coagulation necrosis. If the 
volatilized zone has a large area of a few mm in diameter, 
it is possible to destroy tumours bigger than those treated 
by a simple coagulation. If the volatilized region is narrow, 
a cutting effect is then obtained.

It also emphasizes to the development of several 
ideas:

8.2 Photoablative effect
This effect is defined as a pure ablation of material 

without thermal lesions at the margins, such as one would 
get with a scalpel which occurs due to dissociation. With 
very short wavelengths (190 to 300 nm), the electric field 
associated with the light is higher than the binding energy 
between molecules. The molecular bonds are broken and 
the tissue components are vaporized, without generation of 
any heat at the edges. This effect is obtained with excimer 
lasers emitting in the ultra-violet (193 nm: ArF, 248 nm 
:KrF or 308 nm: XeCl). The action is very superficial, only 

over several microns, because light at these wavelengths 
is very strongly absorbed by tissue.

The photablative effect may also be obtained by lasers 
emitting in the infra-red such as the Erbium:YAG at 2900 
nm. Since 2900 nm is at a peak of absorption in water, the 
absorption in tissue is so intense that the vaporization is 
immediate and superficial. Additionally, the very short 
duration of the pulse (a few hundred microseconds) avoids 
the phenomenon of thermal diffusion.

The photoablative effect offers no practical advantage 
for making incisions or for ablating vascular tissues 
because they will bleed in the same way as with a scalpel. 
It can only be used on tissues which will not bleed. It is 
in fact difficult to imitate the action of the scalpel because 
one must take into account not only the direction and 
the speed of cutting, but also the pressure applied to the 
tissue. Lasers are suitable for this application because of 
the reproducibility of their effects which can be modelled, 
and because of the absence of mechanical contact with the 
tissue. By this way, excimer lasers have found application 
in ophthalmology for photorefractive keratoplasty. Fig. 10 
depicts the spectral absorption of different eye media and 
eye transmission up to the retina.

This procedure is for patients presenting with refraction 
problems. In myopia, the image is focused in front of the 
retina while in case of hypermetropia, it is the opposite. 
The laser technique is used to change the curvature of the 
cornea in order to correct the difficulty of focusing an image 
on to the retina. Similarly, various corneal pathologies 
can be treated: for example, the after-effects of keratitis, 
dystrophy or keratinisation. A preliminary analysis of the 
corneal topography allows specification of the correction 
required and to control the laser treatment parameters.

The laser used is an ArF excimer laser (193 nm) which is 
immediately stopped by the superficial layers of the cornea, 
resulting in a photoablation of the surface. The depth of 
photoablation can be varied from several tens to about 150 
microns; typically one dioptre of myopia corresponds to 
about 10 microns of photoablation.

The treatment can be on an out-patient basis after 
a contact corneal anaesthetic. It is important that the 
patient does not move his eye during the treatment, which 
may last for several seconds. The laser beam is adjusted 
either by a diaphragm or by a mask. The operation is not 
painless, and blurring of the vision lasts for several weeks, 
while it becomes progressively clearer. The complications 
of photorefractive keratoplasty are: regression of the 
correction, dazzle, and astigmatism due to possible 
decentring of the laser beam. 
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8.3 Photodynamic effect
Photodynamic therapy (PDT) involves the relatively 

selective uptake of a photosensitizing drug and subsequent 
irradiation with light of a suitable wavelength. In the 
presence of oxygen, singlet oxygen is produced with the 
induction of a cytotoxic action. Illumination is required 
at a wavelength corresponding to the peak absorption 
of the drug. Localization of the effect in the target tissue 
is most commonly achieved by intravenous injection of 
the photosensitizer. It can also be administered topically, 
by spraying the surface of the organ, or orally. It may be 
noted that the photosensitizing drugs are not toxic at the 
dose levels used.

The illumination is delivered at a time between 
several hours to several days after the administration of 
the photosensitizer. The wavelength is chosen judiciously 
which can be absorbed well by the drug and suits the 
depth of the desired effect in tissue. Light in the green 
region of the spectrum is used for superficial effects and 
in the red for deeper effects. Laser light is delivered using 
a fibre optic for endoscopic treatments. While only a laser 
beam can currently deliver power levels of around one 
watt at the end of a fibre in the green or red regions, non-
laser light sources are also being developed. Usually, dye 
lasers pumped by a blue or green laser (doubled Nd:YAG 
or argon ion) are used. Diode lasers emitting in the red 
region are attracting interest because of their convenient 
portability.

The phototoxic action of the drug on the target cells is 
well understood. The drug after being excited by photon 
absorption finally returns to its ground state and while 
doing so transfers its energy to ambient oxygen producing 
singlet oxygen. This singlet oxygen is an extremely reactive 
substance which oxidizes all the tissue constituents coming 

into contact and the effect is therefore very localized. In 
contrast to thermal effects, photochemical effects need only 
low power densities, several tens of watts / cm2, so as not 
to degrade the drug by thermal effects, and long exposure 
times (typically ten minutes). The only photosensitizing 
drug currently authorised for the market is photofrin, 
a hematoporphyrin derivative. The drug focuses on 
recurring bronchial and oesophageal cancers. Various other 
applications are presently being researched.

The potential applications of PDT are principally in 
oncology; for example palliative treatments for obstructive 
cancers in the airway or esophagus. Treatment may be 
curative for small cancers in these sites and in multi-centred 
cancers such as those in the bladder. In dermatology, the 
quality of the cosmetic result may justify this technique for 
skin cancers. There are also indications in neurosurgery, 
ophthalmology, gynecology, ENT, etc. PDT can also be 
applied to pre-cancerous lesions such as dysplasia of the 
lower esophagus. Finally, there appear to be potential 
applications outside oncology with viral lesions (e.g. HPV, 
herpes), psoriasis, and in vitro, the inactivation of HIV 
during blood transfusion as well as changing immune 
status by altering lymphocyte activity.

9. Concluding Remarks
In this brief overview we found that laser material 

processing have become indispensable engineering 
solutions for a large number of applications. High initial 
capital cost was one of the major obstacles in choosing 
the laser material processing. Moreover, the appearance 
of new applications and markets for lasers has created 
strong incentives for further investment in innovation in 
lasers. All of this feedback and self-reinforcing dynamics 
are classic features of general-purpose technologies. The 
global market for laser systems for materials processing 

Fig. 10: Spectral absorption of different eye media and eye transmission up to the retina.
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increased by 6.8% in last year and reached the new record 
volume of $ 12.6 billion. The increase was mainly due to 
China, Europe, North America and Japan. Laser macro 
processing systems, used for cutting, welding, marking, 
and additive manufacturing, account for 75% of the total 
market volume.  Still, the automotive industry is a major 
driver with substantial investments into high-power laser 
welding and cutting equipment. Medical and cosmetic 
applications have a share of about 10% which is a very 
healthy indication.

The market for laser systems for microelectronics 
processing accounts for 25% share and this segment 
expanded by 15% last year mainly due to the increased 
use of laser processes for the manufacturing of mobile 
electronic devices and their components such as displays 
and semiconductors. Fiber lasers now hold a 40% market 
share, ahead of gas lasers, represented by CO2 and excimer 
lasers (35%), and bulk solid state and diode lasers (25%). 
The demand for fiber lasers grew by 15% last year to $1.3 
billion. Their major applications are cutting, welding, 
marking, and additive manufacturing. The market volume 
for bulk solid state lasers grew in the ultrashort-pulsed 
segment. Fiber lasers continued to take away market share 
from high-power CO2 lasers as well as bulk solid state 
lasers. In the meantime, CO2 lasers are finding their major 
applications in marking and the processing of non-metals.   
Excimer lasers are mainly used for microlithography and 
in flat panel display manufacturing. 

Judging from the development since the days of 
drilling hole in diamond, it is quite clear that laser material 
processing is a dynamic field and even today new and 
interesting technology is being pursued throughout the 
world. Therefore, assessment of evolving technology must 
also be a continuing activity, not only to recognize the 
impact of the scientific achievements themselves, but also to 
keep the entire processing endeavor in step with a changing 
world-wide economic and political environment.
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Abstract
Ionic liquid based “green’” syntheses are currently receiving the highest attention for preparing efficient 
materials. This feature article aims providing and introduction to the two very important fields. First is the 
synthesis of rare-earth doped materials using ILs and their several photonic and biophotonic applications 
and second is the synthesis of semiconducting nanomaterials and their potential catalytic/ photocatalytic 
applications.  Different photoluminescence mechanism like upconversion and down conversion which 
has immense potential for environmentally benign and energy efficient lighting including solar cell 
applications are explained first.   In addition several other biophotonic applications like photodynamic 
therapy, FRET (Förster Resonance Energy Transfer) based biological detections are explained. In the 
following, semiconducting nanomaterials using ILs with tunable properties are discussed followed by 
their photocatalytic applications useful for removal of toxic dyes.   Last but not the least, in this article, it 
is shown how ILs can not only act as a solvent, capping or templating agent but also it can tune the crystal 
phase, morphology of the host materials which eventually tune the photophysical properties of the dopant 
rare-earth ions and optoelectronic properties of semiconducting nanomaterials.

1.  Introduction
Designing of nanomaterials with desired properties/

property combinations for the several applications such as 
magnetic, optoelectronic, scintillator, electroluminescence, 
bio-imaging, bio-medical application etc. is one of the 
most emerging topic of present time [1-3]. Amongst many, 
synthesis of energy efficient materials useful for solar light 
conversion, designing of  environmentally benign lighting, 
catalytic/photocatalytic degradation of toxic pollutants 
are utmost important. Normally, light emitting or light 
harvesting nanomaterials, can be categorized into three 
groups, semiconducting, rare-earth (RE) based and organic 
based nanomaterials. Among them, semiconductors and 
organic nanomaterials exhibit size-dependent optical 
property due to quantum confinement effect [2,4]. On the 
other hand, rare-earth doped nanomaterials show size 
independent optical property as f-f electronic transitions 
are substantially shielded by high energy 5s and 5p orbitals. 
However, crystal phase, morphology, core-shell formation, 
lattice strain and most importantly by judicious selection of 
host matrix, dopant ion combination,optical properties of 
RE based nanoparticles can be effectively tuned [1,2,4-6]

Optimizing synthesis protocols is one of the important 
steps for obtaining the nanomaterials with desired 
properties like particle size, crystal phase, morphology etc. 
Obviously, judicious choice of solvent, surfactants,  reactant 
precursors is very crucial [1,2,7-9].  Numerous hazardous 
organic solvent and surfactant are being used so far for 
the synthesis and tuning the properties of nanoparticles. 

And, exploration of environment-friendly synthesis 
protocol is need of the hour. Different synthesis methods 
ranging from solvothermal, hydrothermal, chemical vapor 
deposition, sol-gel method, micro-emulsion, epitaxial 
method, thermal decomposition methods, combustion, 
microwave assisted etc. have been developed so far [1,2]. 
Currently, ionic liquids (ILs) started to draw a special 
attention both in industries and academia. ILs are generally 
the organic salt comprised of cation and anion and exist as 
a liquid at ambient conditions [7-9]. Physical and chemical 
properties of ILs make them much superior than other 
organic solvents due to their wide liquidus range, large 
electrochemical window, negligible vapour pressure, non-
flammability, high thermal stability, high viscosity etc. 
leading to several applications in different fields such as 
organic solvent, f-element separation, catalysis, electrolytes 
etc. [7-9]. However their role in synthesis of nanomaterials 
is still in its infancy. Intriguing properties like tunability 
in proper cation and anion combination, in changing the 
alkyl chain length, concentrations, viscosity etc. helps IL to 
be termed as “green and designer” solvent and can be very 
effective tool for nanomaterials synthesis.  Some reports 
have already shown how ILs can be used as a capping and 
templating agent for tuning the crystal phase, size, and 
morphology of the nanoparticle [2,3,10-17]

Herein, the role of ILs for the synthesis of energy 
efficient nanoparticles is discussed in detail. In this article, 
the whole discussion is divided into two categories: rare-
earth doped materials which have different photonic 
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Fig. 1: Tool box for the synthesis of numerous ILs via judicious 
selection of cation and anion.

Fig. 2: A general scheme depicting IL based synthesis of materials.

and biophotonic applications and semiconductors based 
materials useful for catalytic/photocatalytic degradation 
of dyes etc (Figure 2). It is envisaged how the tunable 
features of the IL can be explored for tuning the structural 
and physical properties of host materials (both rare-earth 
based and semiconducting) and then eventually tunes the 
optoelectronic properties of the nanoparticles. A special 
emphasis is given on how ILs can be used as capping and 
templating agent for tuning the size, shape, crystal phase 
and lattice strain of nanoparticles. Upconverting and down 
converting nanoparticles useful for increasing the efficiency 
of the solar cell along with other applications like biological 
detections etc. will be discussed. In addition, synthesis of 
semiconducting nanoparticles in ionic liquid medium and 
their catalytic/photocatalytic effect will be highlighted.

and ternary fluorides are explored recently [1-3,6]. Several 
synthesis methods have been developed so far, however, 
room temperature ionic liquid (RTIL) assisted synthesis 
of the host materials is currently attracting a remarkable 
attention. Not only, IL acts as capping and templating agent, 
reaction solvent etc. however it also acts as reaction partner 
especially for synthesis of fluorides based host materials. 
Thus the judicious selection of the IL for the synthesis of host 
materials is very significant [11-18]. For example, Lorbeer 
et al. used different ILs in which [C4mim]+, [C2mim]+, 
[C4mim]+, [Cholin]+, [P66614]+and [C4py]+ participate as a 
cation and BF4

- and PF6
- as counter ions (anion) [12]. They 

have used all these ionic liquids to prepare binary fluorides 
for example quantum cutting Eu3+ doped GdF3 where ILs 
are not only act as a solvent, templating agent but also act 
as a fluorine source on hydrolysis of the counter anion 
BF4

- and PF6
- [12] Due to presence of large cation and 

anion and high polarizability, IL can absorb microwave 
efficiently and same group, again used the IL (C4mimBF4

-) 
as reaction partner (source of fluoride) for the preparation 
of BaF2: Eu3+ nanomaterials [3,13]. Same IL (C4mimBF4

-) was 
used again for the preparation of green emitting quantum 
cutting NaGdF4: RE (Er/Tb) nanoparticles [14]. On the 
other hand, Ghosh et al. employed different ILs assisted 
solvothermal method for synthesizing the quantum cutting 
Eu3+ doped NaGdF4 nanophosphors [11]. Judicious choice 
of reaction temperature,  effect of IL and ratio of Gd:F 
(1:8) were noticed as central factors for selective synthesis 
of hexagonal NaGdF4:Eu3+ nanoparticles. In an another 
work, Ghosh et al. [15] reported synthesis of oxygen-free 
Eu3+-doped NaGdF4 nanocrystals using imidazolium-based 
ILs at room temperature and using only water as solvent 
under normal stirring. Selective tuning of the shape, 
morphology and, most importantly, the crystal phase of the 
host lattice is achieved by changing the alkyl side length, 
the H-bonding capabilities and the concentration of 1-alkyl-
3-methylimidazolium bromide ILs, [Cnmim]Br. When 
[C2mim]Br IL is used, hexagonal NaGdF4 nanoparticles 
are obtained. In the case of ILs with longer pendant 
alkyl chains such as butyl (C4), octyl (C8) or decyl (C10), 
extremely small nanoparticles of the cubic polymorph 
form, which then convert even at room temperature (RT) 
to the thermodynamically favored hexagonal modification. 
The hexagonal nanomaterial shows a substantial quantum 
cutting effciency (154%) whilst in the cubic material, the 
effect is negligible (107%) [15]. It is revealed that [C2mim]+ 
ions anchor to the (110) plane of the primary nuclei, 
leading to reduced reaction rates and formation of the 
thermodynamically stable hexagonal phase through an 
imperfect oriented attachment mechanism. However, 
cubic polymorph which is less thermodynamically stable 

2. Rare-earth (RE) based light emitting nanomaterials
2.1 Synthesis of IL assisted RE-doped nanoparticles

To prepare efficient rare-earth doped materials, it is 
very important to choose a good host material. Normally 
host materials are chosen on the basis of high chemical and 
thermal stability, refractive index and low phonon energy 
[1-3,6,15-17] In general, oxides, phosphates, vanadate and 
fluorides are well-known as a host material for doping of 
the RE ions [1,2]. Amongst them, due to lower phonon 
energy and tunability in crystal phase, different binary 
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Fig. 3: A schematic diagram of quantum cutting  
downconversion process.

Fig.4: A schematic diagram of energy transfer upconversion process

is obtained for ILs with higher alkyl chain lengths. As 
initially extremely small particles with an extraordinarily 
high surface energy form, the crystal phase completely 
changes to the hexagonal form spontaneously over an 
extended time at room temperature [15].

2.2 Optical properties RE ion/s doped nanoparticles
The common electronic configuration of RE3+ ion 

can be represented as [Xe] 4fn, where n is the number of 
electron present in the f-orbitals. The 4f orbitals are well 
shielded by the filled 5s25p6 sub-shells. As a result, the 
energies of the electronic levels are not greatly influenced 
by the chemical environment in which the rare-earth ions 
are located resulting observation of sharp inner-shell f-f 
transitions at well defined energies [1,2,4]. The origin of 
photoluminescence property in RE3+ ion is predominated 
intraconfigurational f-f electronic transitions and their 
number of allowed excited states can be determined by 
14!/(14-n)!n!, where n is the number of electrons situated 
in the f-orbitals in III oxidation state (RE3+)[2,4].

On the basis of a thoughtful combination of trivalent 
RE3+ ions, they exhibit various photophysical processes such 
as normal direct excitation, charge transfer, energy transfer, 
quantum cutting downconversion and upconversion. 
Often, quantum cutting downconverted and upconverted 
nanomaterials are substantially synthesized for the 
widespread applications both in photonic and biophotonic. 
Herein, a brief overview about the trivalent RE-doped 
quantum cutting downconversion and upconversion 
nanomaterials is given [1,2].

2.2.1  Quantum cutting downconversion nanomaterials
Quantum cutting downconversion is a process in 

which one high energy photon is converted by a material 
into more than one low energy photons. Figure 3 shows 
the mechanism of the quantum cutting downconversion 
and this can be understood as two types of RE3+ ions are 
doped in a host matrix, one is called sensitizer which 
absorbs an incident photon of VUV region and via two 
successive energy transfer processes it is donated to 
another dopant ion called activator which emits the two 
low energy visible photons [1,2]. So the selection of dopant 
ion is very crucial to get such kind of materials and the 
most commonly used dopant ions for getting the quantum 
cutting downconversion nanomaterials are Gd3+ and Eu3+ as 
sensitizer and activator respectively. For example, Lorbeer 
et al. found high quantum cutting efficiency (194 and 197%) 
which is very close to the maximum possible theoretical 
limit in the trigonal sub-10 nm GdF3:Eu3+ nanoparticles.12 

However, phase dependent quantum cutting efficiency 
was depicted by Ghosh et al.11 They observed that 187% 

and 127% quantum cutting efficiency were found in the 
hexagonal and cubic phase of NaGdF4: Eu3+ nanoparticles 
respectively [11]. The same group again reported the 
phase dependent (hexagonal~154% and cubic~107%) high 
quantum efficiency of oxygen free-Eu3+-doped NaGdF4 
nanoparticles at low temperature using the several ionic 
liquids [15]. Mudring and co-workers illustrated that 
alkali co-doping along with the rare-earth ions in alkaline 
host matrices not only increases the quantum cutting 
efficiency through charge compensation but also enhances 
homogeneity, crystallinity for improving the quantum 
cutting efficiency near to the maximum possible theoretical 
limit (199%) [13]
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Fig. 5: Applications of RE3+ ions doped nanomaterials

2.2.2 Upconversion (UC) nanomaterials 
Contrary to quantum cutting downconversion process, 

upconversion is a photo-physical process in which two 
low energy pumped photons (preferably of NIR regime) 
are absorbed first and then converted into one high energy 
photon of visible light. In other words, it is one of the most 
studied nonlinear optical process after second harmonic 
generation and two photons absorption and it was 
independently discovered by Auzel as well as Ovsyankin 
and Feofilov in 1960s [1,2].

Upconversion photo-physical process can be further 
classified into five categories such as a) energy transfer 
upconversion (b), excited state absorption, (c) mediated 
photon-avalanche effect, (d) co-operative energy transfer 
upconversion and (e) energy migration upconversion. 
Although, energy transfer upconversion is the most studied 
photo-physical process (as shown in Fig. 4) [1,2]. In this 
process, sensitizer and activator simultaneously absorb 
pumped photons of NIR region, after that sensitizer is 
relaxed to GS by transferring its absorbed energy to the 
activator. Then activator is excited from the metastable 
state to the excited state. When activator relaxed from 
excited to GS, it emits visible region of light. There are 
numerous examples in which ILs are employed for 
synthesizing the upconversion nanomaterials. [C4mim]BF4 
IL is extensively used for the synthesis of NaYF4 doped with 
RE3+ ions as upconverting nanomaterials. Here, [C4mim]
BF4 and [C4mim]PF6 have played a vital role as solvent, 
reaction partner (releases fluoride ion on hydrolysis) 
and templating agent in nanomaterials synthesis[16-
19]. First time Liu et al. employed ionothermal method 
to prepare water soluble, upconverting and hexagonal 
NaYF4:Yb3+,Er3+/Tm3+ nanophosphors, where  IL, [C4mim]
BF4 was used as solvent, fluorine source and templating 
agent [16].

Chen et al. prepared wide range (200-430 nm) 
of spherical RE3+ (Yb /Er /Tm) doped with NaYF4 
nanoclusters and nanoparticles using the [C4mim]BF4 and 
[C4mim]PF6 respectively as a source of fluoride ion via 
microwave-assisted synthesis method and interestingly 
they noticed excellent upconversion properties [17]. Similar 
synthesis method was also employed for the preparation 
of NaYF4 using the[C4mim]BF4 as a reaction partner by 
other group [18,19].

2.2.3 Applications of RE3+ ion/s doped nanophosphors 
materials 

Rare-earth ion doped nanophosphors materials 
have an enormous range of applications but majorly 
we classified them into two parts a) photonic and b) 

biophotonic applications, which will be discussed here 
briefly (Fig. 5).

2.2.3.1  Photonic applications
White light emitting materials:

Currently, the environment-friendly and cost effective 
production of energy efficient nanophosphor materials for 
the generation of white light is an important research topic.  
To achieve this, there are two practices are being employed 
such as a combination of three color LEDs in a single device 
like blue, a green and a red and phosphor-converted LEDs 
(pcLEDs) to get the white light. The second concept relies 
on phosphor converted LEDs, which bear good similarities 
to compact fluorescent lamps (CFLs). A phosphor material 
converts the blue or UV light emitted by the diode to white 
light. This can be achieved in a blue LED by combination 
with a yellow phosphor, where the transparency of the 
phosphor layer controls the final light colour [20], or with 
the combination of a near UV LED and a judiciously chosen 
phosphor materials, which themselves create white light 
emission [21]. By doping proper concentration of Ce3+, 
Tb3+ and Eu3+/Sm3+ in any host of low phonon energy 
like fluorides etc. white light may also be obtained. For 
example, upon exciting the allowed 4f-5d transition Ce3+ 

excitation, energy transfer occurs from Ce3+ to Tb3+ and then 
to Eu3+ or Sm3+. This kind of energy transfer may results in 
white light comprised of blue light from Ce3+ ions, green 
light from Tb3+ ions and red light from Eu3+ ions.

Energy efficient and environmentally benign lighting:
There are two worldwide accepted problems: efficient 

and effective utilization of energy resources and removal 
of conventional light emitting materials in which toxic 
element such as mercury (Hg) is used as discharge 
medium. It is widely accepted that solar energy is the one of 
the cheapest source for any form of energy (heat, light and 
electricity) but the efficient utilization of whole spectrum 
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Fig. 6: PDT application of RE3+ ions doped nanomaterials

range of solar light is still a challenge. Upconversion and 
quantum cutting nanomaterials can be effectively used to 
enhancing the solar cell efficiency and removing the old 
light emitting sources. Normally spectral mismatch occurs 
resulting in the energy loss in the conversion of solar 
energy to electricity as the photons of lower or lesser the 
band gap energy are not absorbed by a solar cell and in this 
regard, upconverted material can help. An upconverting 
phosphor material absorbs the transmitted sub-band-gap 
photons by sequential ground state absorption/excited 
state absorption followed by the creation of an excited state 
in the up-converting phosphor from which high energy 
photons are emitted. Then these photons can be absorbed 
in the solar cell to create electron-hole pairs. Shalav and 
co-workers used NaYF4:Er3+ upconverted phosphor for 
enhanced NIR silicon solar cell response.22 An UPC layer 
was placed on the rear of bifacial buried contact silicon 
solar cell and it was verified that solar cell response in 
the NIR region was enhanced. Similarly quantum cutting 
materials can be useful for increasing the solar cell 
efficiency. Photons of the solar spectrum that have higher 
energy than the band gap of the semiconducting material 
overshoots the band gap and the excess energy is lost. So, 
suitable quantum-cutting phosphors can cut this energy 
in two photons of lower energy those are able to cross the 
band gap of the solar cell material. By this, the efficiency 
of the solar cell can be improved beyond the Shockley-
Queisser limit [23].

Energy-saving lighting is a very important topic. 
Developed countries have already or are currently 
planning to replace conventional incandescent lamps 
which consume very high energy and these lamps are 
now being replaced by more environmentally benign light 
sources like compact fluorescent lamps (CFLs). However, 
the commercial CFLs also contain mercury (Hg) which 
certainly generates some environmental and health issues 
after their disposal. Possible alternatives in which Hg can 
be replaced by an environmentally benign noble gases like 
Xe depends on new materials which have quantum yield 
more than 100% . This can be achieved through quantum-
cutting [15].

2.2.3.2 Bio-photonic applications
Rare-earth ions doped nanophosphors can be used to 

understand the molecular level biological system. RE ions 
doped nanomaterials are much superior to the organic 
and semiconductors based nanoparticles for biological 
applications due to their (semiconducting + organic) high 
energy excitation, low tissue penetration and inherent 
toxicity. There are numerous applications of trivalent RE 
ions doped nanomaterials in biological systems especially 

upconverting nanomaterials. Herein, we have discussed 
major applications such as photodynamic therapy, detection 
of other biological species via FRET and biological imaging 
under in vivo and vitro conditions [1,2].

Photodynamic therapy:
Currently, photodynamic therapy (PDT) is substantially 

practiced for the killing of infected cells in which the 
infected cells are irradiated with high energy radiation to 
generate the highly reactive species (O. free radical from 
O2 molecules) from biological surrounding (Fig. 6). Later, 
this reactive species (O.) can interact with the infected cells 
to kill them [1,2]. This PDT technique consisted of three 
parts: light source, photosensitizers and reactive species. 
Judicious selection of all these three component of PDT 
is vital. For example, NaYF4: Yb with co-doped RE3+ (Er/
Tm) ions and combination with other nanomaterials is 
used now[1,2,4].

FRET-based biological sensing: 
FRET (Förster Resonance Energy Transfer or 

Fluorescence Resonance Energy Transfer) is another 
method to get the information of the biological system. 
Using this, molecular distance between the donor and 
acceptor molecules is determined and typically, it is taken 
place when the distance between acceptor and donor 
distance is less than 10Ao. In other word, it can be said that 
it is “nanoscopic ruler” to measure the separation between 
acceptor and donor molecules.The efficiency of FRET is 
inversely dependent on the sixth power of separation 
between acceptor and donor and can be expressed as 
[24]:
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Fig. 7: PXRD patterns of the as-prepared indium sulphide nanocrystals 
using different ionic liquid a) [C2mim] Br, b) [C4mim]Br, c) [C6mim]
Br, d) [C8mim]Br, e) [C10mim]Br, and f) TMAB

Where, r is the distance between acceptor and donor, 
K(T) (r) is rate of energy transfer, τ(d) is the life time of 
donor without acceptor and Ro is Förster distance which 
is typically in the range of 20-60Ao. This nanoscale level 
process occured due to dipole-dipole interactions between 
the donor and acceptor and overlapping of emission energy 
of donor and aborption energy of acceptor and size of 
nanoparticles [25]. FRET is applied for studying the wide 
range of nanoparticles including the dye-labelled bio-
molecules, dyes and quantum dots (QDs). Coupling with 
other nanoparticles such as gold (plasmonic material) and 
Fe2O3 (magnetic material), UC nanoparticles have been 
accepted as good candidate as FRET based bio-sensor 
[1,2,4]. For instances,  Xu et al. prepared FRET biosensor 
using the PEI modified NaYF4:Yb3+/Tm UCNPs as donor 
and CdTe quantum dots (QDs) capped with thioglycolic 
acid (TGA) as an acceptor to detect the lead (Pb2+) in the 
human serum [26]. On other hand, cubic NaYF4:Ce/Tb 
biotinylated nanocrystals was used as TR-FRET (Time-
Resolved Fluorescence Resonance Energy Transfer) probes 
to detect the trace amount of avidin in the detection limit 
of 5nM [27].

In vivo and in vitro bio-imaging: 
In vivo is fundamentally concerned to study the effect 

of biological entities (cells, tissues, antibodie, peptides 
etc.) in natural or within the living system while in vitro, 
biological entities are studied in simulated eniviroment 
in which all the essential components are available for the 
growth of that biological entities. Usually upconvereting 
RE3+ ions doped nanoparticles are considered as a good 
candidate for applications in in vivo and in vitro bio-
imaging [1-2,4].This is due to the sharp emission-band, 
large anti-stokes shift, chemically stable, and resistant to 
photobleaching etc. However, the major issue is they are 
water insoluble. Therefore, to increase the water solubility 
and biocompatibility, upconconevrsion nanoparticles 
surfaces are funtiontionlized with silica coating (Stober’s 
method). For instance, Zhan et al. used the 915 nm laser 
for exciting the upconverting nanoparticles (UCNPs)
NaYF4:Yb3+ doped with Tm/ Er/ Ho [28] and studied 
the both in vitro and in vivo bio-imaging. First, for in 
vitro imaging, functionalized UCNPs was conjugate 
with antibodies and then incubated into the HeLa cancer 
cell line. On the other hand, in vivo imaging , being 
hydrophilic, biocompatible and stable the UCNPs was 
coated with DSPE-mPEG-5000 molecules [28].

3. Semiconducting nanomaterials and their 
application as catalyst/photocatalyst 
3.1. Influence of ionic liquid on the size, morphology and 
phase of the semiconducting nanomaterials

As ILs can act as templating and capping agent and in 
addition, it has tunable physical  properties like solubility, 
concentration, polratity, viscosity, varied cation/anion 
combinations; ILs can be effectively used to prepare 
semiconducting materials which have several applications 
in optoelectronic, magnetic, photocatalysis, solar cell etc. 
[29-39].

Recently Ghosh and co-workers elucidated the role of 
imidazolium based ILs ([Cnmim] Br, n=2, 4, 6, 8, and 10 and 
Tetramethyl ammonium bromide (TMAB)) in the crystal 
phase tuning from cubic to tetragonal form of indium 
sulphide nanoparticles synthesized through ILs assited 
solvothermal method [10]. On changing the pendant alkyl 
chain length of imidazolium-based ILs, different phases of 
In2S3 nanoparticles were evolved under same experimental 
conditions (as shown in Fig. 7). For short alkyl chain length 
(n=2 and 4) pure cubic phase is appeared (Fig. 7a and 
7b). However, on increasing the alkyl chain length (n= 
6, 8 and 10) tetragonal phase appeared (Fig. 7c, 7d, and 
7e). In addition, pure tetragonal phase was noticed on 
using the TMAB IL (as shown in Fig. 7f) which devoids of 
aromaticity. Normally, ILs can be attached at the particular 
site of nucleation and can govern the crystal growth by three 
probable ways: a) by π-π interaction between aromatic ring 
systems b) hydrogen bonding between the initial nuclei 
facets and the H atom in C(2) position of [Cnmim]+ and c) 
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Fig. 8: FESEM images of indium sulphide nanoparticles synthesized using the different ionic 
liquids: a) [C2mim]Br, b) [C4mim]Br, c) [C6mim]Br, d) [C8mim]Br, e) [C10mim]Br and f) 
TMAB.

steric crowding due to the alkyl chain length of the ILs on 
either of nitrogen in imidazolium ring system. Analysis of 
this particular case reveals that the evolution of the phase 
is not affected by H-bonding rather [C2mim]+ ions are 
anchored on a particular plane via the π-system.10 It is laso 
seen that by tuning the alkyl chain length of imidazolium-
based IL different morphologies are observed (as shown in 
figure 8a-f).10 It is found that the formation and assembly of 
the  nanoflakes are different for different ILs employed for 
the synthesis of indium sulphide nanoparticles. For the ILs 
with small alkyl chain length ([C2mim]Br and [C4mim]Br), 
nanoflakes are assembled in form of spherical structure. 
However, nano-sheet like structure was found in the IL 
having longer alkyl chain length ([C6mim]Br, [C8mim]Br, 
[C10mim]Br) [10].

Moreover, rutile and rutile-anatase phases of TiO2 
were tuned by employing [C2mim]Br IL and it was 
noticed that the evolution of pure phase was dependent 
on the content of IL [31]. In addition, capping nature of 
IL was nicely supported when different size (anatase 
nanoparticles was 4-6 nm and rutile nanorods was 
found of 3-6 nm in diameter and 20-60 nm in length) and 

shape of nanoparticles were originated [31]. Wang et al. 
found that change in morphology from nanoparticles  to 
nanorods and then to nanowire for ZnO nanoparticles 
was dependent on alkyl chain length (C-1) and proton at 
C-2 position of imidazolium ILs ([C2mim]BF4, [C4mim]BF4 
and [C2dmim]BF4) [32]. Additionally, Qi et al. used the 
[C3mim] Br IL as stabilizing agent and template for the 
synthesis of the ring-ZnO nanoparticles via hydrothermal 
method [33]. However Lian et al. prepared the α-Fe2O3 
nanoparticles with various morphologies (mesoporous 
hollow microspheres, microcubes, and porous nanorods) 
using the [bmim]Cl [34].

3.2. Optical property of semiconductors nanomaterials
It is well known that optical property of the 

semiconductor nanomaterials is very much dependent 
on the size of nanomaterials due to quantum confinement 
(Fig. 9). In other words, on changing the size of the 
semiconducting nanomaterials using the ILs, band gap can 
be effectively tuned [35,36]. By irradiation of the materials of 
particular wavelength, after absorbing the energy, electron 
is excited from the valance band (VB) to conduction band 
(CB) and the hole is left into the VB. When electron and 

hole is again recombined together, 
emission of energy either in form of 
light is taken place [35,36]. Wang et 
al. obtained the various morphologies 
(nanoparticles, nanorods and shorter 
nanorods) using the different ILs and 
reaction conditions. Subsequently, 
morphology dependent luminescence 
property in ZnO was noticed [32]. It 
was found that on excitation of ZnO 
at 325 nm, strong and broad green 
emission peak appeared about 555 nm 
due to the recombination of electron 
and photo-excited holes. Further, this 
green emission was observed stronger 
for the nanoparticles than the nanorods 
and shorter nanorods of ZnO [32]. On 
the other hand, morphology (discs, 
rings and tubes) dependent tuning of 
photoluminescence property of ZnO 
was also reported by Qi et al. in which 
morphology was tuned by varying the 
concentration of IL ([C3mim] Br) [33]. 
Here, intensity of photoluminescence 
was observed higher in ring ZnO 
nanoparticles than the tubes and discs. 
This was attributed to the increase in 
the intrinsic defect such as oxygen 
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Fig. 9: Schematic representation of size dependent change in band gap of 
semiconductors

Fig. 10: Schematic representation of photocatalysis  
of pollutants by nanoparticles.

vacancies and/or zinc deficiency [33]. Sharma et al. [10] 
illustrated the tuning of band gap (2.01 -2.41 eV) of the In2S3 
by varying the alkyl side chain length of the imidazolium 
based ILs. Indium sulphide nanoparticles synthesized 
using the smaller alkyl chain IL ([C2mim]Br, [C2dmim]Br,  
and [C4mim]Br have shown  high band gap  as compared 
to the nanoparticles synthesized using longer alkyl chain 
containing ILs ( [C8mim]Br and [C10mim]Br) [10].

3.3 Semiconducting nanomaterials as catalysis/
photocatalysis

Recently, applications of semiconductor nanomaterials 
as catalyst/photocatalyst draw a huge attention. Photo-
catalysis using semiconducting materials are discussed 
below in brief [10,29,37-39]

3.3.1  Mechanism of photocatalysis
Photocatalysis, in general, is the process 

in which reaction is catalyzed in the presence 
of light. But the major utility of this process 
relies on degradation of the organic pollutant 
especially organic dyes from the water bodies 
either in the presence of ordinary light or 
sunlight and phtotcatalytic hydrogen-evolution 
activity [10,37]. Organic dyes (methyl orange, 
methylene blue, rhodamine, crystal violet 
etc.) which are extensively used in the textile, 
paper, food, etc. as a coloring agent, are directly 
discarded into the water resources such as 
ponds, lakes, rivers etc. leading to the severe 
pollution of these resources which cause serious 

diseases. Normally in photocatalysis, upon irradiating light 
onto the nanoparticle, electron is excited from the valance 
band (VB) to the higher energy level conduction band (CB); 
hydroxyl ion (OH‑) of water donate the excess electron to the 
VB and being converted into reactive hydroxyl free radical 
(OH.) which on further reaction with pollutant leading to 
degradation into the organic pollutant (Figure 10). On the 
other hand, dissolved O2 accept the electron from the CB to 
transform into superoxide free radical (O2

.) [10, 29].

3.3.2 Some examples of photocatalysis using 
semiconductors

Now-a-days, semiconductors based nanomaterials are 
extensively used as a photo-catalysts such as ZnO, In2S3, 
CdS, Cu2S etc. Amongst them, TiO2 is one of the highly 
prominent photo-catalyst to date. Although, there are 
various factors that govern the photocatalytic activity of 
semiconductor-based nanomaterials, most common factors 
are specific surface area, morphology, band gap and dye-
photocatalyst interaction [29,10, 32,38]

Alammar et al. depicted that efficient photodegradtion 
(95%) of methyl orange using ZnO nanoparticles 
synthesized by [C10mim][Tf2N] [38]. Same group also 
studied the phase dependent degradation of methyl orange 
in the presence of TiO2 nanoparticles synthesized using 
the different ILs (such as [N1888][Tf2N], [C4mim][Tf2N] 
[P66614][Tf2N], [C3mimOH][Tf2N] and [C4Py][Tf2N]) [39]. 
They found that mixed phase (anatase+brookite) TiO2 
nanoparticles obtained by ([N1888][Tf2N], [C4mim][Tf2N] 
[P66614][Tf2N] shows better photocatalytic activity (>98%) 
than that of pure phase (anatase phase) TiO2 nanoparticles 
([C3mimOH][Tf2N] and [C4Py][Tf2N]) under the similar 
experimental conditions. It can be attributed to the surface 
area of the TiO2 nanoparticles [39]. Morphology dependent 
photocatalytic degradation of rhodamine B was observed 
with ZnO nanomaterials. It is noticed that uniform grain 
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size and homogenously long, thin 1D ZnO nanoparticles 
were showing the better photocatalytic activity.32 In 
addition, Sharma et al. [10] illustrated the adsorption 
controlled photocatalysis of crystal violet dye using In2S3 
nanoparticles synthesized by different ionic liquids. 
In2S3 nanoparticles synthesized by TMAB (teramethyl 
ammonium bromide) ILs have shown the maximum 
photocatalytic efficiency (94.8 %) and it was attributed to 
highest adsorption of dye which occurred in dark [10].

4. Conclusion
In conclusion, IL based synthesis has tremendous 

potential in materials synthesis due to their superior 
properties compared to normal organic solvent and 
templating agents like long chain amines etc. As there exists 
10 [18] possible cation/anion combination for ILs, ILs can 
be designed in such a way that not only 12 basic principles 
of “green chemistry” will be followed but also these can act 
as  “designer” solvents for the synthesis of nanoparticles.  
By  tuning the basic properties of ILs like alkyl side chain 
length, counter ions, concentration, viscosity etc. basic 
properties of the host materials (both for rare-earth doping 
and semiconductor itself) like crystal phase, morphology, 
lattice strain, size can be tuned which eventually tune the 
optoelectronic properties of the materials.
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Abstract
This review is aimed at bringing the most fundamental aspects of sugar based gel chemistry, at an 
elementary level, that can serve the needs of the researcher who are working in this area of gel chemistry. 
Therefore, this article is conveniently divided into five broad sections. Thus the first section deals with some 
introductory aspects such as What is a gel?, weak interactions responsible for gelation and importance of 
gel chemistry. On other hand, the section two deals with the rational design of gelators which gives some 
basic idea to the researchers while designing gelators. The third section, on the other hand deals with the 
available advanced characterization techniques such as XRD, SEM and TEM for gels. The fourth section 
consists of the synthesis, morphology of the self-assembly and their material applications of different 
sugar based gelators reported from our laboratory. The fifth section describes the future perspectives in 
this area of research.

1. Introduction
Nowadays the gels and their derivatives are found to 

be attractive candidates for a variety of applications such as, 
the design and synthesis of biomaterials, nano-materials, 
stimuliresponsive materials, sensors, and templating 
components for inorganic and organic nanostructures, and 
catalysis [1]. LMWGs can remediate unwanted pollutants 
from the environment including: immobilisation of oil 
spills, removal of dyes and the detection or removal 
of chemical weapons. Selective gelation mediated oil 
removal process involves solidification of the oil in form 
of gel by gelator followed by removal of the oil swollen 
gel through physical process such as filtration. From this, 
it is clear that LMWGs have genuine potential for oil spill 
remediation [2]. Therefore, this article is conveniently 
divided into five broad sections. Thus the first section 
deals with some introductory aspects such as What is 
a gel?, weak interactions responsible for gelation and 
importance of gel chemistry. On other hand, the section 
two deals with the rational design of gelators which 
gives some basic idea to the researchers while designing 
gelators. The third section, on the other hand deals with 
the available advanced characterization techniques such as 
XRD, SEM and TEM for gels. The fourth section consists of 
the synthesis, morphology of the self-assembly and their 
material applications of different sugar based gelators 
reported from our laboratory. The fifth section describes 
the future perspectives in this area of research.

2. Gels
In general, gel is a substantially diluted system which 

exhibits no steady state flow [3]. Based on the combined 
microscopic and macroscopic properties, a substance can 
be classified as a gel, if it: (i) has a continuous microscopic 
structure with macroscopic dimensions that is permanent 
on the time scale of an analytical technique and (ii) is solid-
like in its rheological behavior despite being mostly liquid 
[4].  Molecular self-assembly is a very common phenomenon 
present in nature, and is also whispered to play a vital role 
in several events such as the emergence, conservation, and 
encroachment of life [5]. While the several of the researchers 
are mainly focusing on molecular self-assembly which 
centers around the biomacromolecules (proteins, nucleic 
acids, and polysaccharides). However, the self-assembly 
of small molecules in water or an organic solvent also has 
insightful inferences from fundamental science to practical 
applications [6]. A subclass of these small molecules is 
called “gelators” because one usual and also important 
consequence of the self-assembly of such small molecules 
is the formation of a gel or gelation. Depending upon the 
nature of the solvents in which it forms gel, these small 
molecules are further classified as hydrogelators (water 
as the liquid phase) and organogelators (organic solvent 
as the liquid phase) [7]. Thus the gelators self-assemble 
in solvents to form three-dimensional supramolecular 
networks that encapsulate a large amount of solvents to 
afford a gel [8]. Unlike the conventional polymeric gels 
that are mainly based on covalently crosslinked networks 
of polymers (i.e., gellant), the networks in supramolecular 
gels are formed due to noncovalent interactions  
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(Figure 1) between the gelators such as hydrogen bonds, 
π−π stacking, van der Waals interaction, solvophobic 
effects, metal−ligand coordination, charge-transfer 
interactions ionic, and hydrophobic interactions, to form 
athixotropic matrix [9].

LMWGs are inexpensive and also commercially available. 
They may be derived from several abundant renewable 
resources. Significant amount of established synthetic 
strategies are known in the literature to construct various 
building blocks made of biocompatible monosaccharides, 
disaccharides or polysaccharides for gelation [12]. Thus, 
with the available literature, one can have broad classes of 
LMWGs derived from these carbohydrates. Comparison 
between the completely protected sugars with that of 
simple unprotected sugar reveals that the former has 
more of hydrophobic nature while the latter has more 
hydrophilic character (Table 1).

The chemical structures of partially protected 1, 
unprotected 2 and fully protected 3 sugars are given in the 
Fig. 2. Due to these extremely only one characteristics, self-
assembly is not possible in these cases. While my research 
group is working on synthesis of partially protected sugar, 
we have observed a selective protection of two hydroxyl 
groups results in the balanced amount of both hydrophobic 
and hydrophilic characteristics. Out of the several partially 
protected monosaccharide derivatives, our research group 
observed a significant amount of self-assembly with the 
4- and 6- protected monosaccharides and it has become 
reported in the literature [13].

3. Rational design of gelators
Although the chemical structure of many of the 

gelators that are reported in the literature looks rather 
simple, it is very difficult to predict the gelating ability 
based on structure. In most of the cases, the research 
findings were serendipity in nature.  So, the information 
obtained from a variety of diverse types of gelators helped 
us to rationalize the structural requirements for molecules 
to act as gelators. Though several research groups made 
attempts to rationalize the structure of gelator molecules, 
still the rational design of small molecular gelators has 
remained elusive [14]. It has been proven that the presence 

Fig. 1: Various possible noncovalent interactions between the 
gelators10.

2.1 Sugar based gels 
Sugars are one major class of biological macromolecules 

that serve organisms as energy sources particularly 
through glucose which is a monosaccharide.  Due to 
biodegradable, non-toxic and eco-friendly nature, the 
self-assembly of sugar-derived Low Molecular Weight 
Gelators (LMWGs) has received more attention and this 
makes them perfect building blocks for the regeneration 
of  several bio species such as,  tissues and organs [11]. In 
general the precursors for the synthesis of sugar-derived 

Table 1: Comparison of properties of partially protected 1, unprotected 2 and 
fully protected 3 sugars.

Properties Parially protected Saccharide Saccharide Fully protected Saccharide

Hydrophilicity Partially hydrophilic & partially 
hydrophobic Hydrophilic Hydrophobic

Solubility Sparingly soluable or insoluable Soluable in water Soluable in organic Solvents
Noncovalent 
interactions

Hydrogen bonding, van der Waals, 
pi-pi interactions etc.,

Hydogen bonding 
interactions

Not hydrogen bonding 
Interactions

Slf-assembly 
behaviour Self assemble easily No self assembly No self assembly

Gel forming capacity Forms gel Does not form gel Does not form gel 
(depending upon R group)
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Fig. 2: Structures of partially protected 1, unprotected 2 and fully protected 3 sugars.

of functional groups which are capable of forming 
hydrogen bonds such as amide, carboxylic acid, urea and 
hydroxyl are crucial for gelators [15]. In addition to these, 
the directionality, specificity and rigidity of multiple 
hydrogen bonding interactions is expected to help spatial 
arrangement of functional chromophores in achieving 
efficient gelation. It is also observed that the functional 
groups such as, amino acids, cholesterol, peptides, sugar, 
cyclohexyl amine, oligoethylene chains who are found to 
increase the gelating ability in  a variety of solvents [16] and 
in these cases,  hydrophobic interactions plays a vital role, 
some of the weak interactions such as, pi-pi, van der Waals 
forces of interactions are also play important role in the 
self-assembly [17]. Molecules that enable donor−acceptor 
and dipole−dipole interactions can also lead to the gelation 
of solvents [18]. The presence of long hydrocarbon chains 
with a certain ideal chain length is also an important 
structural requirement because the alkyl chains facilitates 
van der Waals interaction of gelator molecules [19].  In 

most of the cases, more than one structural requirement is 
needed for the design of gelator molecules, but exceptions 
are also available in the literature.  We also made an 
attempt to rationalize the design of sugar based gelator 
and it is given in the Figure 3a. Chemical structures of 
some Structures of urea [20] based 4, amino acid [21] 
based 5 and azobenzene [22] based 6 gelators which have 
been reported in the literature are given in the Figure 3b. 
The presence of difference segments which are capable 
of forming hydrogen bonding, π−π stacking and dipole-
dipole interactions is an important factors for the gelators 
reported from our group. In another case, we have proved 
that the presence of halogen-halogen interaction resulted 
in gelaton [23].

4. Advanced Characterization Techniques for Gels 
The amplified number of gelators and the necessity 

of more information on supramolecular gels at both 
the nanoscale and molecular levels need more accurate 

Fig. 3: (a) Rationalization of different groups responsible for gelation in different N-glycosylamines [11]; (b) Structures of gelators  
based on urea [20] 4, amino acid [21] 5 and azobenzene [22] 6 gelators reported in the literature.
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analysis and characterization of the gels. There are 
numerous techniques available to do these tasks. These 
techniques vary from very simple “naked eye” technique 
to highly sophisticated microscopic techniques and they 
have been classified into five types are visual inspection, 
microscopy techniques, rheometry and Differential 
Scanning Calorimetry(DSC), X-ray diffraction and. 
spectroscopic methods [12].  From these available 
techniques, suitable and sufficient characterization 
methods can be carefully employed, by understanding 
the gelation mechanisms and influencing factors of gels, 
to make full use of their respective advantages and better 
investigation of these materials.

5. Sugar based derivatives as gelators
Several of the sugar derivatives such as, are shown 

to form gelation in variety of solvents. Details about the 
molecular structures (Fig.4) gelation and gels are given 
below.

A novel class of N2-/N3-(β-D-glucopyranosyl)-2-
/3-aminoquinoline derivatives 7 have been done and 
reported from our research group [24]. The gelation test 
has showed that these derivatives form gel with a wide 
range of polar and nonpolar solvents. Morphology of 
these amphiphilic gels were studied using SEM, HR-TEM 
microscopic techniques. DSC and powder XRD analysis 
have been done to understand thermal and structural 
properties. The microscopic studies confirm the formation 
of fibrous structures by the self-assembly behavior of 
these molecules and it is due to the influence of organic 
solvents. It is clear that hydrogen bonding and van der 
Waals interactions are playing an important role in the 
self-assembled structure. 

In another report our research group has reported 
synthesis of a novel class of six different triaryl pyridine 
N-glycosylamine amphiphiles 8 and their characterization 
based on different spectral techniques [25]. Gelation 
properties in different aromatic and aliphatic solvents have 
been studied and gelation was witnessed predominantly 
in aliphatic solvents with CGC of 0.5% (w/v). FE-SEM and 
powder XRD techniques revealed fibrous entanglement of 
the molecules in the gel state with intermolecular spaces 
of 3.62 nm and 0.43 nm.

Simple aldol condensation of β-C-glycosylketones with 
rhodamine core molecule containing aldehyde group under 
ambient reaction conditions yielded the corresponding 
β-C-glycosides 9 in good yields and the product formation 
was confirmed through different spectral techniques [26]. 
Gelation properties of these compounds were examined 
and their self-assembled nanostructures were analysed 

by HRTEM, FESEM, DSC, rheological and powder XRD 
techniques. 

Reaction between rhodamine and different sugar 
derivatives, resulted in the formation of rhodamine 
based N-glycosylamines 10 [27]. All the compounds were 
characterized by using different spectral techniques and 
by their physico-chemical properties. These molecules 
self-assemble into different nanostructures in different 
solvents. 

Fluorescence derivatives find lot of applications in 
the sensor chemistry. Recently, we have reported the 
synthesis of fluorescein based β-amino glycosyl ketones in 
the literature. Reaction between fluorescein-monaldehyde 
and 4,6-O-protected-C-glycoside in presence of potassium 
carbonate resulted in the formation of the corresponding 
glycoside 11   and it is a one-pot synthesis [28].  By using 
HRTEM, DSC and powder XRD techniques the gelation 
properties of the compounds were analyzed.

Several β-C-glycosidic ketones 12 were shown to act 
as amphiphilic in nature [29]. The gelation test disclosed 
that the mono alkylated β -C-glycosides synthesized were 
capable of forming gels in the presence of a wide range of 
solvents at critical gelator concentrations (CGCs) as low as 
0.3%. The FE-SEM, TEM and powder XRD analysis showed 
that the fiber structure obtained on the self-assembly of 
these compound were transformed into suspension rods 
under the influence of water. The fibers and the rod-shaped 
self-assembles formed by these glycosidic ketones have 
been utilized as templates for the synthesis of mesoporous 
silica materials. 

In general chalcone derivatives are used in the synthesis 
of several organic molecules. Sugar chalcone derivatives 
13 was synthesized from the aldol condensation of various 
β-C-glycosidic ketones with aromatic aldehydes under the 
basic condition [30]. The corresponding olefinic reduced 
product was also obtained using Zn-mediated reduction 
of sugar-chalcone. Few of the sugar-chalcone derivatives 
were found to be gelators for different solvents, and their 
morphology was studied using FESEM and HRTEM. 
From the morphological studies it was found that the 
nano structures formed by the chalcone derivatives are 
fibrous network.    

A series of α,β-unsaturated-β-C-glycosidic ketones 
14 were synthesized starting from D-glucose in three 
steps [31].  Heteroaromatic aldehydes undergoes aldol 
condensation with 4,6-O-butylidene-β-C-glycosidic ketones 
in the presence of a suitable organocatalyst which leads 
to the formation of glycosydic ketones in stereoselective 
manner. Hydrogen bonding and π–π stacking of the 
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reported derivatives were established by single-crystal 
XRD. It was determined that the soft material derived 
from this method had a diameter of 10–200 nm with 
a three-dimensional network by using SEM and HR-
TEM. 

In one another report alkyl-benzimidazole-carbazole 
based N-glycosylamines 15 were synthesized, confirmed 
using 1H and 13C NMR spectral techniques and MALDI-TOF 
and EI-mass analysis [32]. From the 1H NMR analysis of 
N-glycosylamines, the existence of the anomeric proton in 
β-configuration was identified and it was further supported 
by 1H–1H COSY and 2D-ROESY NMR analysis. All the 
N-glycosylamines were found to be good gelators for 
aliphatic rather than aromatic solvents. Out of six gelators 
reported five were recognized as supergelators, since their 
Critical Gelation Concentration (CGC) is less than 1%.  
Microscopic analysis proved that N-glycosylamines self-
assemble into nanofibers. 

B e n z i m i d a z o l e  b a s e d  p a r t i a l l y  p r o t e c t e d 
N-glycosylamine amphiphiles 16 possessing different alkyl 
chains were synthesized in good yield [33]. The identities 
of the synthesized N-glycosylamines were confirmed using 
1H and 13C NMR and the molecular mass of representative 

samples was confirmed using MALDI-TOF mass analysis. 
All the benzimidazole based N-glycosylamines were 
found to exist in β-anomeric form, which was confirmed 
by 1H NMR analysis. Gelation studies proved that these 
compounds can gelate both aromatic and aliphatic solvents, 
at a lower CGC of 0.8%. From SEM and TEM microscopic 
studies the nanostructure of self-assembly was found as 
nanofibers. This nanofiber structure was converted to 
nanosphers upon the addition of Cu2+ ions. 

A sugar-based photoresponsive supergelator, 
N-glycosylazobenzene 17 that shows selective gelation of 
aromatic solvents is described in another report [34]. The 
trans-cis isomerization of the azobenzene moiety permits 
photoinduced axing of the entangled gel fibers to short 
fibers, resulting in controlled fiber length and gel–sol 
transition. The gelator is found to be useful for the selective 
removal of toxic aromatic solvents from water. 

By applying “Click reaction” a facile regioselective 
synthesis of bis-triazologlycolipids 18, a class of 
organogelators, has been reported from our research 
group [35]. The morphology and self-assembly nature 
of the gelators were inspected by FESEM and HRTEM 
analysis. From these analysis it is confirmed that both 

Table 2: General characteristics of the representative examples of sugar based gelators category  
reported from our research group.

Compound 
Number

Nature of the solvent used 
for gelation

Critical Gelation 
Concentration (w/v %)

Morphology of the gel* Reference 
number

7 Polar Aliphatic 1.0 Fibrous like aggregates 24
8 Polar, 

Nonpolar
Aliphatic, 
Aromatic

1.0 Fibrous network 25

9 Nonpolar Aromatic 1.0 Fibrous network 26
10 Polar Aliphatic 1.0 Cross-linked nanofibrous 27
11 Polar, 

Nonpolar
Aliphatic, 
Aromatic

1.0 Twisted rod 28

12 Polar, 
Nonpolar

Aliphatic, 
Aromatic

0.3 Fibers and rods 29

13 Polar Aliphatic 1.5 Lamellar 30
14 Polar Aliphatic 0.75 Fibrous and lamellar 31
15 Polar, 

Nonpolar
Aliphatic, 
Aromatic

≤1 Nanofibers 32

16 Polar, 
Nonpolar

Aliphatic, 
Aromatic

1.0 Nanofibers changed into nanorods 
on addition of copper ions

33

17 Nonpolar Aromatic 0.1 Nanofiber networks 34
18 Polar mixture 

of solvents
Aliphatic 1.0 Fibrous and lamellar 35

19 Nonpolar Aromatic 1.0 3D fibrous network 23
20 Polar, 

Nonpolar
Aliphatic, 
Aromatic

≤1 Nanorods and textured spheroids 36

*- Identified from the SEM and TEM techniques 
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fibrous and lamellar structures were obtained for the 
bistriazole derivatives. 

A series of N-glycosylamine based organogelators 
19 were synthesised from three different 4,6-O-protected 
saccharides and corresponding amines [23]. The effect of 
substituents present in the N-glycosylamines on gelation 
was studied from NMR and computational studies. Among 
the eighteen different gelators studied, the compound 
bearing fluorine as a substituent, was observed to gelate 
at very low concentrations (CGC: 1%). Further, it also 
revealed that dipole–dipole interactions play an important 
role in the case of N-glycosylamine-based gelators. The 
presence of π–π stacking and H-bonding, as inferred from 
the reported X-ray diffraction data, are responsible for the 
gelation. 

Fig. 4: Molecular structures of representative examples of sugar based a) 
heterocylic, b) fluorescein, c) chalcone; d), benzimidazole e), azobenzene 
& triazole and f) benzohydrazide gelators derived from D-glucose 
reported from our research group.

Similarly another novel class of methyltriglycol 
benzohydrazide based N-glycosylamines 20 containing 
long alkyl chain derivatives have been reported in the 
literature and characterization was carried out by using 
NMR (1H and 13C) spectral analysis [36]. The gelation test 
showed that these derivatives form gels with a wide range 
of polar (1,2-dichlorobenzene, chloroform) and non-polar 
(1,2-dichloroethane, toluene, benzene) solvents even with 
lower CGC (1.0%). Morphologies of these amphiphilic 
glycosidic gels were studied using FE-SEM, TEM and 
powder XRD analysis. These experiments confirm the 
formation of 3D self-assembled spherical and rod structures 
because of the influence of organic solvents.

A correlative table has also been prepared and shown as 
Table 2 which comprises of different sugar based gelators, 
their Critical Gelation Concentration (CGC), morphology 
of the gels and their respective reference numbers.
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6. Conclusion 
In this review, we have made a journey across 

various areas of sugar-derived LMWGs studied from our 
research group, uncovering the rational design of gelators, 
characterization techniques and beneficial applications, 
ranging from sensing to their uses as tissue culture media. 
Easy commercial availability, biodegradability, non-toxic 
nature and eco-friendly behavior are the most important 
advantages of using sugar derivatives as a platform of 
gelation. We have also systematically explored how one 
may utilize various non-covalent forces to endow the 
sugar-based LMWGs system with desirable properties. 
Furthermore, light responsive azobenzene moiety is 
incorporated in the sugar-derived gelators to develop 
fascinating stimuli-responsive soft materials and unveil 
the secrets of various biological phenomena. The gelation 
ability of sugar-based LMWGs at a reasonably low 
concentration and their significantly high mechanical 
strength have proven them to be promising candidates for 
phase selective gelation. 

7. Future perspectives
Since, sugar based glators often lead to the formation 

of transparent gels with high transmittance in the visible 
region and glass-like refractive indices, they have 
promising potential to become glass substitutes as well. 
The supramolecular gel matrix has been extensively 
utilized as template for the synthesis and stabilization of 
different kinds of nanomaterials in order to develop novel 
nanocomposites with interesting properties but, this field 
has not adequately explored with sugar-derived gels. 
One of the promising applications of sugar based gelators 
is in organic electronics which area needs considerable 
attention. We believe that this review will become a very 
useful source for such future design and innovation.

Acknowledgements
T. M. acknowledges University of Madras, Guindy 

Campus Chennai and Central University of Tamil Nadu 
(CUTN), Thiruvarur, Tamil Nadu for infrastructure 
facilities. T. M acknowledges the contributions made by 
his former students and collaborators. K. S acknowledges 
Central University of Tamil Nadu (CUTN), Thiruvarur, 
Tamil Nadu for research fellowship.

References
1.	 G. Yu, X. Yan, C. Han and F. Huang, Chem. Soc. Rev., 2013, 

42, 6697-6722.
2.	 B. O. Okesolaa and D. K. Smith, Chem. Soc. Rev., 2016, 45, 

4226-4251.
3.	 S. Z. D. Cheng, S. K. Lee, J. S. Barley, S. L. C. Hsu and F. W. 

Harris, Macromolecules, 1991, 24, 1883-1889.

4.	 R. G. Weiss and P. Te ́ rech, in Molecular Gels: Materials with 
Self-Assembled Fibrillar Networks, ed. R. G. Weiss and P. Te 
´rech, Springer, Dordrecht, The Netherlands, 2006, 1–12.

5.	 J. M. Lehn, Angew. Chem., Int. Ed., 1990, 29, 1304-1319.
6.	 X. Du, J. Zhou, J. Shi and B. Xu, Chem. Rev., 2015, 115, 

13165–13307. 
7.	 P. Terech and R. G. Weiss, Chem. Rev., 1997, 97, 3133-3159.
8.	 Z. Yang and B. Xu, Adv. Mater., 2006, 18, 3043-3046.
9.	 Y. Lan, M. G. Corradini, R. G. Weiss, S. R. Raghavanc and 

M. A. Rogers, Chem. Soc. Rev., 2015, 44, 6035-6058.
10.	 K. Karthik Kumar, M. Elango, V. Subramanian and T. Mohan 

Das, New. J. Chem., 2009, 33, 1570-1577.
11.	 J. B. Matson and S. I. Stupp, Chem. Commun., 2012, 48, 26-

33.
12.	 S. Dattaa and S. Bhattacharya, Chem. Soc. Rev., 2015, 44, 5596-

5637.
13.	 T. Mohan Das, C. P. Rao and E. Kolehmainen, Carbohydr. 

Res., 2001, 334, 261-269.
14.	 S. S. Babu, V. K. Praveen and A. Ajayaghosh, Chem. Rev., 

2014, 114, 1973−2129.
15.	 M. R. Rao and S. S. Sun, Langmuir, 2013, 29, 15146-15158.
16.	 M. Suzuki and K. Hanabusa, Chem. Soc. Rev., 2009, 38, 967-

975.
17.	 A. Ajayaghosh and S. J. George, J. Am. Chem. Soc., 2001, 123, 

5148-5149.
18.	 D. B. Amabilino, D. K. Smith and J. W. Steedc, Chem. Soc. 

Rev., 2017, 46, 2404-2420.
19.	 S. Miljanić, L. Frkanec, Z. Meić and M. Žinić, Eur. J. Org. 

Chem., 2006, 1323-1334.
20.	 F. Rodrı´guez-Llansola, B. Escuder, J. F. Miravet, D. Hermida-

Merino, I. W. Hamley, C. J. Cardin and W. Hayes, Chem. 
Commun., 2010, 46, 7960–7962.

21.	 S. Bhattacharya and Y. Krishnan-Ghosh, Chem. Commun., 
2001, 0, 185–186.

22.	 F. Xie, L. Qin and M. H. Liu, Chem. Commun., 2016, 52, 
930–933.

23.	 S. Nagarajan, P. Ravinder, V. Subramanian and T. Mohan 
Das, New J. Chem., 2010, 34, 123-131.

24.	 K. Soundarajan, R. Periyasamy, P. Muthuvel and T. Mohan 
Das, Trends in Carbohydr. Res., 2017, 9, 44-51.

25.	 M. K. Dhinakaran and T. Mohan Das, Org. Biomol. Chem., 
2012, 10, 2077-2083.

26.	 M. Rajasekar and T. Mohan Das, Trends in Carbohydr. Res., 
2016, 8, 1-10.

27.	 M. Rajasekar and T. Mohan Das, RSC. Adv., 2014, 4, 30976-
30983.

28.	 M. Rajasekar and T. Mohan Das, RSC. Adv., 2014, 4, 42538-
42545. 

29.	 M. K. Dhinakaran, K. Soundarajan and T. Mohan Das, Trends 
in Carbohydr. Res., 2015, 7, 68-76. 

30.	 A. Hemamalini and T. Mohan Das, RSC. Adv., 2014, 4, 41010-
41016.

31.	 S. Nagarajan, T. Mohan Das, P. Arjun and N. Raaman, J. 
Mater. Chem., 2009, 19, 4587-4596.



SMC Bulletin Vol. 8 (No. 1) April 2017

32

32.	 M. K. Dhinakaran, K. Soundarajan and T. Mohan Das, New 
J. Chem., 2014, 38, 4371-4379.

33.	 M. K. Dhinakaran, K. Soundarajan and T. Mohan Das, New 
J. Chem., 2014, 38, 2874-2883.

34.	 R. Rajaganesh, A. Gopal, T. Mohan Das and A. Ajayaghosh, 
Org. Lett., 2012, 14, 748-751.

35.	 A. Hemamalini and T. Mohan Das, New J. Chem., 2014, 38, 
3015-3021. 

36.	 K. Soundarajan, R. Periyasamy and T. Mohan Das, RSC. Adv., 
2016, 6, 81838-81846.

Rathinam Periyasamy is currently doing research under the guidance of Dr. T. Mohan Das in the 
Department of Chemistry, Central University of Tamil Nadu (CUTN), Thiruvarur. He completed his 
B.Sc (Chemistry) from St. Joseph’s College, Tiruchirappalli and M.Sc (Chemistry) from Bharathidasan 
University, Tiruchirappalli in 2010 and 2012, respectively. His current research interest is to investigate 
self-healing sugar based organogelators with multi stimuli responsive nature for environmental and drug 
delivery applications. He has published two research articles in the international journals.

Kamalakannan Soundarajan is currently doing research under the guidance of Dr. T. Mohan Das in 
the Department of Chemistry, Central University of Tamil Nadu (CUTN), Thiruvarur.  He has completed 
bachelor degree from Pachayappa’s Collage for Men, Kanchipuram in 2006-2009 and master degree from 
University of Madras, Guindy campus, Chennai-25 in 2011. He is Currently working on synthesis of 
saccharide based Low Molecular Weight Organogelatar derivatives and also sugar based natural products. 
These derivatives are expected to have various applications in the field of materials and biology. He has 
published five research articles in well reputed international journals.

Dr. T. Mohan Das received his Ph.D. from the Indian Institute of Technology Bombay (IITB) in Mumbai 
(India) under the supervision of Professor C. P. Rao in the field of carbohydrate chemistry. In 2002, he joined 
the group of Prof. D. –H. Chin at the National Chung Hsing University (NCHU), (Taichung, TAIWAN) as 
a post-doctoral fellow to work on the anticancer Neocarzinostatin (NCS) protein. Later he moved to National 
Tsing Hua University (NTHU), (Hsinchu, TAIWAN) and worked with Prof. J. R. Hwu in the area of 
silicon chemistry. In the year 2004, he started his independent professional carrier as an assistant professor 
in Department of Organic Chemistry, University of Madras, India which is an old and prestigious institute 
in the country. In the University of Madras, he started his independent research in the area of carbohydrate 
chemistry.  Later on, in 2013, he moved to Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 
India as an associate professor.The principle interests of Mohan Das’s research group are, (a) Development 
of novel synthetic methods, (b) Synthesis of sugar based gelator molecules and glyco-hybrids. His scientific 
work has been published in 50 original international publications with high profile journals, two review 
articles and one Indian patent. One of the article published in New Journal of Chemistry was awarded top 
ten article. He has successfully completed seven research projects sponsored by different funding agencies 
of Government of India. He was awarded Outstanding Young Scientist Scheme (2007), Dr. HC Srivastava 
Young Scientist Award (2015).He has guided eight and guiding four PhD students.



33

SMC Bulletin Vol. 8 (No. 1) April 2017

1. Introduction
Solar energy is preferred over non-renewable 

energy sources as it does not involve limited emission 
of green-house gases and because of its abundance. To 
extract the solar energy into usable energy/work/fuels, 
different methods of harvesting like photovoltaic [1], 
photocatalytic [2] and photoelectrochemical method[3] 
are used. Prerequisite to these methods are appropriate 
semiconductor (SC) electrodes and a convolution 
of many physichochemical steps like excitation of 
electrons-holes and separation of electron-hole pairs 
result in the generation of electrode potential from the 
solar light [4]. Increase in electron hole recombination, 
poor generation of electron hole pairs, low band-gap, 
low diffusion length results in decrease of potential 
extracted from the solar radiation [5]. The band gap 
of the given SC material depends on the position of 
conduction- and valence- band, and the states within the 
band gap are known as trap states [6]. The band gap of 
the given SC material must be optimum so as to absorb 
significant solar radiation, electron-hole pairs must be 
easily separable and recombination should be low [7]. 
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Abstract
Illuminated Dye Sensitized Solar cells (DSSC) and Photoelectrochemical solar cells (PEC) involve 
convolution of physicochemical processes like electron-hole generation, separation and recombination, 
and trap recombination at the surface of the semiconductor electrode. In this article, we explore these 
processes using the Electrochemical Impedance Spectroscopy (EIS) wherein an equivalent circuit is posited 
from the current response of the system subjected to an AC superimposed on DC potential bias. The bulk 
and interfacial transport of electrons and holes under irradiation and electron-hole recombination governs 
the equivalent circuit at the SC/electrode interface and these processes can be dynamically separated via 
EIS. In DSSC, the presence of Gerischer type impedance at low frequency shows that the charge transport 
through interface is higher than the charge transport through the diffusion inside the SC electrode, while the 
presence of Resistance-Capacitance type impedance at low frequency shows charge transport through the 
interface is lower than the charge transport through diffusion. In PEC water splitting reaction, theoretical 
EIS modeling provides the equivalent circuit at SC/electrolyte interface, by taking trapping/detrapping, 
charge transfer through trap state and valance band into consideration. In PEC, there is competition of 
charge transfer from the valance band and the trap states. The low frequency capacitance can be used as a 
parameter for discrimination of these events. Here we demonstrate that using such electrical parameters, we 
can discriminate of physicochemical processes at DSSC and PEC, considering hematite and hetrostructured 
electrodes as specific case studies.

In DSSC[8], dye molecules gets excited on irradiation 
((a)-(b) in Fig.1, these excited molecules transfer the 
electrons to conduction band(CB) of SC and gets converted 
to S+((b) to (c) in Fig.1). The CB electrons have multiple 
routes to complete the circuit. Ideally it must go to the 
counter electrodes via the load (to extract the maximum 
potential generated into the useful work) to regenerate 
the redox couple (
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A schematic of PEC and associated electrochemical 
reactions are shown in Fig.2. In the water splitting reaction,  
oxygen evolution reaction (OER) occurs at the positive 
electrode and hydrogen evolution reaction (HER) occurs at 
the negative electrode [3]. The minimum thermodynamic 
potential required for the water splitting is 1.23V, but due 



SMC Bulletin Vol. 8 (No. 1) April 2017

34

to many activated processes (like electron-transfer at the 
electrodes, ion-transfer in the electrolyte), the on-set of 
finite reactivity occurs at around 1.6V and the potential 
over and above the minimum thermodynamic potential is 
called the overpotential. By employing the irradiated SC 
electrode in PEC, the externally applied DC potential for 
water splitting can be brought down  [3, 12]. For OER at 
the SC electrode, the valence band energy must be below 
the OER redox potential plus overpotential. However, 
in most SC, the valance band energy is always above the 
redox potential of water plus overpotential, and to make 
it lower, an external bias and irradiation is applied [2, 3]. 
With SC electrode, the extraction of energy available at 
the surface is crucial and this is critically dependent on 
the extent of band bending at the surface and these can be 
analyzed by EIS [13, 14]. 

In Electrochemical Impedance Spectroscopy(EIS) [15], 
a DC (Direct Current) voltage with small AC (Alternating 
Current) voltage with varying frequency is applied at the 
interface, and output current is recorded. The ratio between 

input voltage to output current is the impedance, which 
consists of two parts, viz. real part and imaginary part. The 
impedance data is presented typically via a Nyquist plot or 
via a Bode plot. The Nyquist plot is between the imaginary 
and real part of the impedance, whereas the Bode plot 
depicts the variation of amplitude and phase of impedance 
with frequency. Using the Nyquist plot, an electrical circuit 
is derived that reflects the physical processes that occur 
at the electrode/electrolyte interface [16]. The simplest 
of such an electrical circuit is the Randles circuit (RC), 
with one resistor in parallel with a capacitor and such a 
circuit will generate a semicircular shaped Nyquist plot. 
In general, a Nyquist plot may contain many semicircles, 
each of which gives the number of times charges cross an 
interface. For complicated systems,  the Nyquist plot are 
studied by dividing the Nyquist plot into high frequency-, 
intermediate- and low-frequency regions, and the effect of 
each region is analyzed separately [9-11]. The Bode curve 
can have many frequency dependent elements with each 
frequency element having a particular slope [17]. 
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Cao et. al.[10] demonstrated that the EIS at the SC/
electrolyte interface shows two semicircles and interpreted 
that the low frequency region corresponds to charge 
transfer and high frequency  region corresponds to 
adsorption. However, when EIS was conducted in dark, 
similar pattern of impedance was obtained, suggesting the 
presence of some another phenomena. They suggested that 
the high frequency semicircle is because of space charge 
and surface state charge transfer within the semiconductor, 
while the semicircle at low frequency is because of the 
charges leaving the semiconductor. Takehito Mitate 
et.al[23] used the EIS response of the DSSC and the linear 
variation of interface resistance with potential indicated 
diode-like behavior. Bisquert et.al [11] studied the effect 
of diffusion and recombination inside the TiO2 electrode 
by using EIS analysis with a transmission line analysis 
model. The thin film of TiO2 electrode is in contact with 
electrolyte on one side and the other part in contact with 
the substrate (Fig. 4), with no electronic charges crossing 
the interface at the electrolyte side. 

The aim of this review is to explore the applicability of 
EIS for discrimination of the processes occurring at the SC/
electrolyte interface of DSSC and PEC. Various processes 
like trap state formation, electron hole recombination, space 
charge capacitance that affects the rate of charge transport 
at the SC/electrolyte interface are analyzed. In the past 
[13, 14],  the effect of trap capacitance has not been taken 
into consideration and instead,  the authors generally take 
into account the space charge capacitance and Helmholtz 
capacitance for modeling of IS data. Bisquert [18] has used 
the effect of trap capacitance in EIS and has shown that 
the capacitance obtained at these states are volumetric 
capacitance referred to as the chemical capacitance [19]. The 
trap capacitance is an important parameter that helps in 
distinguishing the transfer of electrons either from valance 
band or conduction band and this will be elaborated later 
in the review [18, 20, 21]. 

2. EIS of DSSC
The EIS of DSSC has been explored by Gratzel et.al 

[22] and this involves four transport processes occurring 
in whole cell: transport of charges at FTO/TiO2 interface, 
TiO2/electrolyte interface, bulk transport of I3

-/I- couple 
for regeneration of dye, regeneration of I3

-/I- couple at the 
counter electrode. The transport of charges inside the TiO2 
electrode contribute to diffusional transport resistance 

frequency-, intermediate- and low-frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope
[17].  
The aim of this review is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate
past [13, 14],  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling
used the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 
capacitance referred to as the chemical capacitance 
distinguishing the transfer of electrons either from valance band or conduction band and thi
in the review [18, 20, 21].  
 

EIS of DSSC 
The EIS of DSSC has been explored by Gratzel et.al
whole cell: transport of charges at FTO/TiO
regeneration of dye, regeneration of I3

electrode contribute to diffusional transport resistance 

recombination reaction at TiO2/electrolyte interface gives recombination resistance 
transport are considered, complete charge transport events and fractional charge transport events. 

For the complete charge transfer at TiO

impedance with recombination resistance 
Large electron life time results in the appearance of conduction band capacitance at TiO

parallel with the diffusional resistance and recombination resistance 

transport, a part of charge will be transfer to interface, hence 

is combined with Gerischer-impedance as shown in F

combined effect of this is ). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 
shown in Fig. 3(a) and (b). 
 

 
Fig.3: equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

from ref.12  

 

frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate of charge transport at the SC/electrolyte interface are analyzed. In the 

,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling of IS data. Bisquert 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

capacitance referred to as the chemical capacitance [19]. The trap capacitance is an important parameter that helps in 
distinguishing the transfer of electrons either from valance band or conduction band and this will be elaborated later 

The EIS of DSSC has been explored by Gratzel et.al [22] and this involves four transport processes occurring in 
whole cell: transport of charges at FTO/TiO2 interface, TiO2/electrolyte interface, bulk transport of I

3
-/I- couple at the counter electrode. The transport of charges inside the TiO

electrode contribute to diffusional transport resistance (impedance caused by  is denoted by 

/electrolyte interface gives recombination resistance . Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events. 

or the complete charge transfer at TiO2/FTO interface,   . There will be presence of diffusional 

impedance with recombination resistance  in series and the high value of  increases the electron life time. 
life time results in the appearance of conduction band capacitance at TiO2, and this capacitance is in 

parallel with the diffusional resistance and recombination resistance  as shown in Fig. 3(a). For fractional charge 

arge will be transfer to interface, hence   , and in this case the effect of 

impedance as shown in Fig. 3(b). (there is no separation between 

). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

frequency regions, and the effect of each region is analyzed separately[9-11]. The 
Bode curve can have many frequency dependent elements with each frequency element having a particular slope 

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 

of charge transport at the SC/electrolyte interface are analyzed. In the 
,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 

of IS data. Bisquert [18] has 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

. The trap capacitance is an important parameter that helps in 
s will be elaborated later 

and this involves four transport processes occurring in 
transport of I3

-/I- couple for 
couple at the counter electrode. The transport of charges inside the TiO2 

denoted by ), and the 

. Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events.  

. There will be presence of diffusional 

increases the electron life time. 
, and this capacitance is in 

(a). For fractional charge 

, and in this case the effect of  and  

(b). (there is no separation between  and , the 

). Other part of electrical circuit, like impedance at the FTO/TiO2 interface, 
impedance at the counter electrode and impedance for regeneration of dye will also appear in electrical circuit as 

 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

 (impedance caused by 

frequency-, intermediate- and low-frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope
[17].  
The aim of this review is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate
past [13, 14],  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling
used the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 
capacitance referred to as the chemical capacitance 
distinguishing the transfer of electrons either from valance band or conduction band and thi
in the review [18, 20, 21].  
 

EIS of DSSC 
The EIS of DSSC has been explored by Gratzel et.al
whole cell: transport of charges at FTO/TiO
regeneration of dye, regeneration of I3

electrode contribute to diffusional transport resistance 

recombination reaction at TiO2/electrolyte interface gives recombination resistance 
transport are considered, complete charge transport events and fractional charge transport events. 

For the complete charge transfer at TiO

impedance with recombination resistance 
Large electron life time results in the appearance of conduction band capacitance at TiO

parallel with the diffusional resistance and recombination resistance 

transport, a part of charge will be transfer to interface, hence 

is combined with Gerischer-impedance as shown in F

combined effect of this is ). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 
shown in Fig. 3(a) and (b). 
 

 
Fig.3: equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

from ref.12  

 

frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate of charge transport at the SC/electrolyte interface are analyzed. In the 

,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling of IS data. Bisquert 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

capacitance referred to as the chemical capacitance [19]. The trap capacitance is an important parameter that helps in 
distinguishing the transfer of electrons either from valance band or conduction band and this will be elaborated later 

The EIS of DSSC has been explored by Gratzel et.al [22] and this involves four transport processes occurring in 
whole cell: transport of charges at FTO/TiO2 interface, TiO2/electrolyte interface, bulk transport of I

3
-/I- couple at the counter electrode. The transport of charges inside the TiO

electrode contribute to diffusional transport resistance (impedance caused by  is denoted by 

/electrolyte interface gives recombination resistance . Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events. 

or the complete charge transfer at TiO2/FTO interface,   . There will be presence of diffusional 

impedance with recombination resistance  in series and the high value of  increases the electron life time. 
life time results in the appearance of conduction band capacitance at TiO2, and this capacitance is in 

parallel with the diffusional resistance and recombination resistance  as shown in Fig. 3(a). For fractional charge 

arge will be transfer to interface, hence   , and in this case the effect of 

impedance as shown in Fig. 3(b). (there is no separation between 

). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

frequency regions, and the effect of each region is analyzed separately[9-11]. The 
Bode curve can have many frequency dependent elements with each frequency element having a particular slope 

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 

of charge transport at the SC/electrolyte interface are analyzed. In the 
,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 

of IS data. Bisquert [18] has 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

. The trap capacitance is an important parameter that helps in 
s will be elaborated later 

and this involves four transport processes occurring in 
transport of I3

-/I- couple for 
couple at the counter electrode. The transport of charges inside the TiO2 

denoted by ), and the 

. Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events.  

. There will be presence of diffusional 

increases the electron life time. 
, and this capacitance is in 

(a). For fractional charge 

, and in this case the effect of  and  

(b). (there is no separation between  and , the 

). Other part of electrical circuit, like impedance at the FTO/TiO2 interface, 
impedance at the counter electrode and impedance for regeneration of dye will also appear in electrical circuit as 

 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

  is denoted by 

frequency-, intermediate- and low-frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope
[17].  
The aim of this review is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate
past [13, 14],  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling
used the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 
capacitance referred to as the chemical capacitance 
distinguishing the transfer of electrons either from valance band or conduction band and thi
in the review [18, 20, 21].  
 

EIS of DSSC 
The EIS of DSSC has been explored by Gratzel et.al
whole cell: transport of charges at FTO/TiO
regeneration of dye, regeneration of I3

electrode contribute to diffusional transport resistance 

recombination reaction at TiO2/electrolyte interface gives recombination resistance 
transport are considered, complete charge transport events and fractional charge transport events. 

For the complete charge transfer at TiO

impedance with recombination resistance 
Large electron life time results in the appearance of conduction band capacitance at TiO

parallel with the diffusional resistance and recombination resistance 

transport, a part of charge will be transfer to interface, hence 

is combined with Gerischer-impedance as shown in F

combined effect of this is ). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 
shown in Fig. 3(a) and (b). 
 

 
Fig.3: equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

from ref.12  

 

frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate of charge transport at the SC/electrolyte interface are analyzed. In the 

,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling of IS data. Bisquert 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

capacitance referred to as the chemical capacitance [19]. The trap capacitance is an important parameter that helps in 
distinguishing the transfer of electrons either from valance band or conduction band and this will be elaborated later 

The EIS of DSSC has been explored by Gratzel et.al [22] and this involves four transport processes occurring in 
whole cell: transport of charges at FTO/TiO2 interface, TiO2/electrolyte interface, bulk transport of I

3
-/I- couple at the counter electrode. The transport of charges inside the TiO

electrode contribute to diffusional transport resistance (impedance caused by  is denoted by 

/electrolyte interface gives recombination resistance . Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events. 

or the complete charge transfer at TiO2/FTO interface,   . There will be presence of diffusional 

impedance with recombination resistance  in series and the high value of  increases the electron life time. 
life time results in the appearance of conduction band capacitance at TiO2, and this capacitance is in 

parallel with the diffusional resistance and recombination resistance  as shown in Fig. 3(a). For fractional charge 

arge will be transfer to interface, hence   , and in this case the effect of 

impedance as shown in Fig. 3(b). (there is no separation between 

). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

frequency regions, and the effect of each region is analyzed separately[9-11]. The 
Bode curve can have many frequency dependent elements with each frequency element having a particular slope 

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 

of charge transport at the SC/electrolyte interface are analyzed. In the 
,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 

of IS data. Bisquert [18] has 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

. The trap capacitance is an important parameter that helps in 
s will be elaborated later 

and this involves four transport processes occurring in 
transport of I3

-/I- couple for 
couple at the counter electrode. The transport of charges inside the TiO2 

denoted by ), and the 

. Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events.  

. There will be presence of diffusional 

increases the electron life time. 
, and this capacitance is in 

(a). For fractional charge 

, and in this case the effect of  and  

(b). (there is no separation between  and , the 

). Other part of electrical circuit, like impedance at the FTO/TiO2 interface, 
impedance at the counter electrode and impedance for regeneration of dye will also appear in electrical circuit as 

 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

), and 
the recombination reaction at TiO2/electrolyte interface 
gives recombination resistance 

frequency-, intermediate- and low-frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope
[17].  
The aim of this review is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate
past [13, 14],  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling
used the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 
capacitance referred to as the chemical capacitance 
distinguishing the transfer of electrons either from valance band or conduction band and thi
in the review [18, 20, 21].  
 

EIS of DSSC 
The EIS of DSSC has been explored by Gratzel et.al
whole cell: transport of charges at FTO/TiO
regeneration of dye, regeneration of I3

electrode contribute to diffusional transport resistance 

recombination reaction at TiO2/electrolyte interface gives recombination resistance 
transport are considered, complete charge transport events and fractional charge transport events. 

For the complete charge transfer at TiO

impedance with recombination resistance 
Large electron life time results in the appearance of conduction band capacitance at TiO

parallel with the diffusional resistance and recombination resistance 

transport, a part of charge will be transfer to interface, hence 

is combined with Gerischer-impedance as shown in F

combined effect of this is ). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 
shown in Fig. 3(a) and (b). 
 

 
Fig.3: equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

from ref.12  

 

frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate of charge transport at the SC/electrolyte interface are analyzed. In the 

,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling of IS data. Bisquert 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

capacitance referred to as the chemical capacitance [19]. The trap capacitance is an important parameter that helps in 
distinguishing the transfer of electrons either from valance band or conduction band and this will be elaborated later 

The EIS of DSSC has been explored by Gratzel et.al [22] and this involves four transport processes occurring in 
whole cell: transport of charges at FTO/TiO2 interface, TiO2/electrolyte interface, bulk transport of I

3
-/I- couple at the counter electrode. The transport of charges inside the TiO

electrode contribute to diffusional transport resistance (impedance caused by  is denoted by 

/electrolyte interface gives recombination resistance . Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events. 

or the complete charge transfer at TiO2/FTO interface,   . There will be presence of diffusional 

impedance with recombination resistance  in series and the high value of  increases the electron life time. 
life time results in the appearance of conduction band capacitance at TiO2, and this capacitance is in 

parallel with the diffusional resistance and recombination resistance  as shown in Fig. 3(a). For fractional charge 

arge will be transfer to interface, hence   , and in this case the effect of 

impedance as shown in Fig. 3(b). (there is no separation between 

). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

frequency regions, and the effect of each region is analyzed separately[9-11]. The 
Bode curve can have many frequency dependent elements with each frequency element having a particular slope 

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 

of charge transport at the SC/electrolyte interface are analyzed. In the 
,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 

of IS data. Bisquert [18] has 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

. The trap capacitance is an important parameter that helps in 
s will be elaborated later 

and this involves four transport processes occurring in 
transport of I3

-/I- couple for 
couple at the counter electrode. The transport of charges inside the TiO2 

denoted by ), and the 

. Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events.  

. There will be presence of diffusional 

increases the electron life time. 
, and this capacitance is in 

(a). For fractional charge 

, and in this case the effect of  and  

(b). (there is no separation between  and , the 

). Other part of electrical circuit, like impedance at the FTO/TiO2 interface, 
impedance at the counter electrode and impedance for regeneration of dye will also appear in electrical circuit as 

 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

 . Two types of charge 
transport are considered, complete charge transport events 
and fractional charge transport events. 

For the complete charge transfer at TiO2/FTO interface,  

frequency-, intermediate- and low-frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope
[17].  
The aim of this review is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate
past [13, 14],  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling
used the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 
capacitance referred to as the chemical capacitance 
distinguishing the transfer of electrons either from valance band or conduction band and thi
in the review [18, 20, 21].  
 

EIS of DSSC 
The EIS of DSSC has been explored by Gratzel et.al
whole cell: transport of charges at FTO/TiO
regeneration of dye, regeneration of I3

electrode contribute to diffusional transport resistance 

recombination reaction at TiO2/electrolyte interface gives recombination resistance 
transport are considered, complete charge transport events and fractional charge transport events. 

For the complete charge transfer at TiO

impedance with recombination resistance 
Large electron life time results in the appearance of conduction band capacitance at TiO

parallel with the diffusional resistance and recombination resistance 

transport, a part of charge will be transfer to interface, hence 

is combined with Gerischer-impedance as shown in F

combined effect of this is ). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 
shown in Fig. 3(a) and (b). 
 

 
Fig.3: equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

from ref.12  

 

frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate of charge transport at the SC/electrolyte interface are analyzed. In the 

,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling of IS data. Bisquert 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

capacitance referred to as the chemical capacitance [19]. The trap capacitance is an important parameter that helps in 
distinguishing the transfer of electrons either from valance band or conduction band and this will be elaborated later 

The EIS of DSSC has been explored by Gratzel et.al [22] and this involves four transport processes occurring in 
whole cell: transport of charges at FTO/TiO2 interface, TiO2/electrolyte interface, bulk transport of I

3
-/I- couple at the counter electrode. The transport of charges inside the TiO

electrode contribute to diffusional transport resistance (impedance caused by  is denoted by 

/electrolyte interface gives recombination resistance . Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events. 

or the complete charge transfer at TiO2/FTO interface,   . There will be presence of diffusional 

impedance with recombination resistance  in series and the high value of  increases the electron life time. 
life time results in the appearance of conduction band capacitance at TiO2, and this capacitance is in 

parallel with the diffusional resistance and recombination resistance  as shown in Fig. 3(a). For fractional charge 

arge will be transfer to interface, hence   , and in this case the effect of 

impedance as shown in Fig. 3(b). (there is no separation between 

). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

frequency regions, and the effect of each region is analyzed separately[9-11]. The 
Bode curve can have many frequency dependent elements with each frequency element having a particular slope 

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 

of charge transport at the SC/electrolyte interface are analyzed. In the 
,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 

of IS data. Bisquert [18] has 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

. The trap capacitance is an important parameter that helps in 
s will be elaborated later 

and this involves four transport processes occurring in 
transport of I3

-/I- couple for 
couple at the counter electrode. The transport of charges inside the TiO2 

denoted by ), and the 

. Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events.  

. There will be presence of diffusional 

increases the electron life time. 
, and this capacitance is in 

(a). For fractional charge 

, and in this case the effect of  and  

(b). (there is no separation between  and , the 

). Other part of electrical circuit, like impedance at the FTO/TiO2 interface, 
impedance at the counter electrode and impedance for regeneration of dye will also appear in electrical circuit as 

 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

. There will be presence of diffusional impedance 
with recombination resistance 

frequency-, intermediate- and low-frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope
[17].  
The aim of this review is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate
past [13, 14],  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling
used the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 
capacitance referred to as the chemical capacitance 
distinguishing the transfer of electrons either from valance band or conduction band and thi
in the review [18, 20, 21].  
 

EIS of DSSC 
The EIS of DSSC has been explored by Gratzel et.al
whole cell: transport of charges at FTO/TiO
regeneration of dye, regeneration of I3

electrode contribute to diffusional transport resistance 

recombination reaction at TiO2/electrolyte interface gives recombination resistance 
transport are considered, complete charge transport events and fractional charge transport events. 

For the complete charge transfer at TiO

impedance with recombination resistance 
Large electron life time results in the appearance of conduction band capacitance at TiO

parallel with the diffusional resistance and recombination resistance 

transport, a part of charge will be transfer to interface, hence 

is combined with Gerischer-impedance as shown in F

combined effect of this is ). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 
shown in Fig. 3(a) and (b). 
 

 
Fig.3: equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

from ref.12  

 

frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate of charge transport at the SC/electrolyte interface are analyzed. In the 

,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling of IS data. Bisquert 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

capacitance referred to as the chemical capacitance [19]. The trap capacitance is an important parameter that helps in 
distinguishing the transfer of electrons either from valance band or conduction band and this will be elaborated later 

The EIS of DSSC has been explored by Gratzel et.al [22] and this involves four transport processes occurring in 
whole cell: transport of charges at FTO/TiO2 interface, TiO2/electrolyte interface, bulk transport of I

3
-/I- couple at the counter electrode. The transport of charges inside the TiO

electrode contribute to diffusional transport resistance (impedance caused by  is denoted by 

/electrolyte interface gives recombination resistance . Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events. 

or the complete charge transfer at TiO2/FTO interface,   . There will be presence of diffusional 

impedance with recombination resistance  in series and the high value of  increases the electron life time. 
life time results in the appearance of conduction band capacitance at TiO2, and this capacitance is in 

parallel with the diffusional resistance and recombination resistance  as shown in Fig. 3(a). For fractional charge 

arge will be transfer to interface, hence   , and in this case the effect of 

impedance as shown in Fig. 3(b). (there is no separation between 

). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

frequency regions, and the effect of each region is analyzed separately[9-11]. The 
Bode curve can have many frequency dependent elements with each frequency element having a particular slope 

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 

of charge transport at the SC/electrolyte interface are analyzed. In the 
,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 

of IS data. Bisquert [18] has 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

. The trap capacitance is an important parameter that helps in 
s will be elaborated later 

and this involves four transport processes occurring in 
transport of I3

-/I- couple for 
couple at the counter electrode. The transport of charges inside the TiO2 

denoted by ), and the 

. Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events.  

. There will be presence of diffusional 

increases the electron life time. 
, and this capacitance is in 

(a). For fractional charge 

, and in this case the effect of  and  

(b). (there is no separation between  and , the 

). Other part of electrical circuit, like impedance at the FTO/TiO2 interface, 
impedance at the counter electrode and impedance for regeneration of dye will also appear in electrical circuit as 

 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

 in series and the high 
value of 

frequency-, intermediate- and low-frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope
[17].  
The aim of this review is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate
past [13, 14],  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling
used the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 
capacitance referred to as the chemical capacitance 
distinguishing the transfer of electrons either from valance band or conduction band and thi
in the review [18, 20, 21].  
 

EIS of DSSC 
The EIS of DSSC has been explored by Gratzel et.al
whole cell: transport of charges at FTO/TiO
regeneration of dye, regeneration of I3

electrode contribute to diffusional transport resistance 

recombination reaction at TiO2/electrolyte interface gives recombination resistance 
transport are considered, complete charge transport events and fractional charge transport events. 

For the complete charge transfer at TiO

impedance with recombination resistance 
Large electron life time results in the appearance of conduction band capacitance at TiO

parallel with the diffusional resistance and recombination resistance 

transport, a part of charge will be transfer to interface, hence 

is combined with Gerischer-impedance as shown in F

combined effect of this is ). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 
shown in Fig. 3(a) and (b). 
 

 
Fig.3: equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

from ref.12  

 

frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate of charge transport at the SC/electrolyte interface are analyzed. In the 

,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling of IS data. Bisquert 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

capacitance referred to as the chemical capacitance [19]. The trap capacitance is an important parameter that helps in 
distinguishing the transfer of electrons either from valance band or conduction band and this will be elaborated later 

The EIS of DSSC has been explored by Gratzel et.al [22] and this involves four transport processes occurring in 
whole cell: transport of charges at FTO/TiO2 interface, TiO2/electrolyte interface, bulk transport of I

3
-/I- couple at the counter electrode. The transport of charges inside the TiO

electrode contribute to diffusional transport resistance (impedance caused by  is denoted by 

/electrolyte interface gives recombination resistance . Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events. 

or the complete charge transfer at TiO2/FTO interface,   . There will be presence of diffusional 

impedance with recombination resistance  in series and the high value of  increases the electron life time. 
life time results in the appearance of conduction band capacitance at TiO2, and this capacitance is in 

parallel with the diffusional resistance and recombination resistance  as shown in Fig. 3(a). For fractional charge 

arge will be transfer to interface, hence   , and in this case the effect of 

impedance as shown in Fig. 3(b). (there is no separation between 

). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

frequency regions, and the effect of each region is analyzed separately[9-11]. The 
Bode curve can have many frequency dependent elements with each frequency element having a particular slope 

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 

of charge transport at the SC/electrolyte interface are analyzed. In the 
,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 

of IS data. Bisquert [18] has 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

. The trap capacitance is an important parameter that helps in 
s will be elaborated later 

and this involves four transport processes occurring in 
transport of I3

-/I- couple for 
couple at the counter electrode. The transport of charges inside the TiO2 

denoted by ), and the 

. Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events.  

. There will be presence of diffusional 

increases the electron life time. 
, and this capacitance is in 

(a). For fractional charge 

, and in this case the effect of  and  

(b). (there is no separation between  and , the 

). Other part of electrical circuit, like impedance at the FTO/TiO2 interface, 
impedance at the counter electrode and impedance for regeneration of dye will also appear in electrical circuit as 

 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

 increases the electron life time. Large electron 
life time results in the appearance of conduction band 
capacitance at TiO2, and this capacitance is in parallel with 
the diffusional resistance and recombination resistance 

frequency-, intermediate- and low-frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope
[17].  
The aim of this review is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate
past [13, 14],  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling
used the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 
capacitance referred to as the chemical capacitance 
distinguishing the transfer of electrons either from valance band or conduction band and thi
in the review [18, 20, 21].  
 

EIS of DSSC 
The EIS of DSSC has been explored by Gratzel et.al
whole cell: transport of charges at FTO/TiO
regeneration of dye, regeneration of I3

electrode contribute to diffusional transport resistance 

recombination reaction at TiO2/electrolyte interface gives recombination resistance 
transport are considered, complete charge transport events and fractional charge transport events. 

For the complete charge transfer at TiO

impedance with recombination resistance 
Large electron life time results in the appearance of conduction band capacitance at TiO

parallel with the diffusional resistance and recombination resistance 

transport, a part of charge will be transfer to interface, hence 

is combined with Gerischer-impedance as shown in F

combined effect of this is ). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 
shown in Fig. 3(a) and (b). 
 

 
Fig.3: equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

from ref.12  

 

frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate of charge transport at the SC/electrolyte interface are analyzed. In the 

,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling of IS data. Bisquert 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

capacitance referred to as the chemical capacitance [19]. The trap capacitance is an important parameter that helps in 
distinguishing the transfer of electrons either from valance band or conduction band and this will be elaborated later 

The EIS of DSSC has been explored by Gratzel et.al [22] and this involves four transport processes occurring in 
whole cell: transport of charges at FTO/TiO2 interface, TiO2/electrolyte interface, bulk transport of I

3
-/I- couple at the counter electrode. The transport of charges inside the TiO

electrode contribute to diffusional transport resistance (impedance caused by  is denoted by 

/electrolyte interface gives recombination resistance . Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events. 

or the complete charge transfer at TiO2/FTO interface,   . There will be presence of diffusional 

impedance with recombination resistance  in series and the high value of  increases the electron life time. 
life time results in the appearance of conduction band capacitance at TiO2, and this capacitance is in 

parallel with the diffusional resistance and recombination resistance  as shown in Fig. 3(a). For fractional charge 

arge will be transfer to interface, hence   , and in this case the effect of 

impedance as shown in Fig. 3(b). (there is no separation between 

). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

frequency regions, and the effect of each region is analyzed separately[9-11]. The 
Bode curve can have many frequency dependent elements with each frequency element having a particular slope 

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 

of charge transport at the SC/electrolyte interface are analyzed. In the 
,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 

of IS data. Bisquert [18] has 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

. The trap capacitance is an important parameter that helps in 
s will be elaborated later 

and this involves four transport processes occurring in 
transport of I3

-/I- couple for 
couple at the counter electrode. The transport of charges inside the TiO2 

denoted by ), and the 

. Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events.  

. There will be presence of diffusional 

increases the electron life time. 
, and this capacitance is in 

(a). For fractional charge 

, and in this case the effect of  and  

(b). (there is no separation between  and , the 

). Other part of electrical circuit, like impedance at the FTO/TiO2 interface, 
impedance at the counter electrode and impedance for regeneration of dye will also appear in electrical circuit as 

 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

 
as shown in Fig. 3(a). For fractional charge transport, a part 
of charge will be transfer to interface, hence 

frequency-, intermediate- and low-frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope
[17].  
The aim of this review is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate
past [13, 14],  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling
used the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 
capacitance referred to as the chemical capacitance 
distinguishing the transfer of electrons either from valance band or conduction band and thi
in the review [18, 20, 21].  
 

EIS of DSSC 
The EIS of DSSC has been explored by Gratzel et.al
whole cell: transport of charges at FTO/TiO
regeneration of dye, regeneration of I3

electrode contribute to diffusional transport resistance 

recombination reaction at TiO2/electrolyte interface gives recombination resistance 
transport are considered, complete charge transport events and fractional charge transport events. 

For the complete charge transfer at TiO

impedance with recombination resistance 
Large electron life time results in the appearance of conduction band capacitance at TiO

parallel with the diffusional resistance and recombination resistance 

transport, a part of charge will be transfer to interface, hence 

is combined with Gerischer-impedance as shown in F

combined effect of this is ). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 
shown in Fig. 3(a) and (b). 
 

 
Fig.3: equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

from ref.12  

 

frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate of charge transport at the SC/electrolyte interface are analyzed. In the 

,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling of IS data. Bisquert 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

capacitance referred to as the chemical capacitance [19]. The trap capacitance is an important parameter that helps in 
distinguishing the transfer of electrons either from valance band or conduction band and this will be elaborated later 

The EIS of DSSC has been explored by Gratzel et.al [22] and this involves four transport processes occurring in 
whole cell: transport of charges at FTO/TiO2 interface, TiO2/electrolyte interface, bulk transport of I

3
-/I- couple at the counter electrode. The transport of charges inside the TiO

electrode contribute to diffusional transport resistance (impedance caused by  is denoted by 

/electrolyte interface gives recombination resistance . Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events. 

or the complete charge transfer at TiO2/FTO interface,   . There will be presence of diffusional 

impedance with recombination resistance  in series and the high value of  increases the electron life time. 
life time results in the appearance of conduction band capacitance at TiO2, and this capacitance is in 

parallel with the diffusional resistance and recombination resistance  as shown in Fig. 3(a). For fractional charge 

arge will be transfer to interface, hence   , and in this case the effect of 

impedance as shown in Fig. 3(b). (there is no separation between 

). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

frequency regions, and the effect of each region is analyzed separately[9-11]. The 
Bode curve can have many frequency dependent elements with each frequency element having a particular slope 

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 

of charge transport at the SC/electrolyte interface are analyzed. In the 
,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 

of IS data. Bisquert [18] has 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

. The trap capacitance is an important parameter that helps in 
s will be elaborated later 

and this involves four transport processes occurring in 
transport of I3

-/I- couple for 
couple at the counter electrode. The transport of charges inside the TiO2 

denoted by ), and the 

. Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events.  

. There will be presence of diffusional 

increases the electron life time. 
, and this capacitance is in 

(a). For fractional charge 

, and in this case the effect of  and  

(b). (there is no separation between  and , the 

). Other part of electrical circuit, like impedance at the FTO/TiO2 interface, 
impedance at the counter electrode and impedance for regeneration of dye will also appear in electrical circuit as 

 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

, and in this case the effect of 

frequency-, intermediate- and low-frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope
[17].  
The aim of this review is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate
past [13, 14],  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling
used the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 
capacitance referred to as the chemical capacitance 
distinguishing the transfer of electrons either from valance band or conduction band and thi
in the review [18, 20, 21].  
 

EIS of DSSC 
The EIS of DSSC has been explored by Gratzel et.al
whole cell: transport of charges at FTO/TiO
regeneration of dye, regeneration of I3

electrode contribute to diffusional transport resistance 

recombination reaction at TiO2/electrolyte interface gives recombination resistance 
transport are considered, complete charge transport events and fractional charge transport events. 

For the complete charge transfer at TiO

impedance with recombination resistance 
Large electron life time results in the appearance of conduction band capacitance at TiO

parallel with the diffusional resistance and recombination resistance 

transport, a part of charge will be transfer to interface, hence 

is combined with Gerischer-impedance as shown in F

combined effect of this is ). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 
shown in Fig. 3(a) and (b). 
 

 
Fig.3: equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

from ref.12  

 

frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate of charge transport at the SC/electrolyte interface are analyzed. In the 

,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling of IS data. Bisquert 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

capacitance referred to as the chemical capacitance [19]. The trap capacitance is an important parameter that helps in 
distinguishing the transfer of electrons either from valance band or conduction band and this will be elaborated later 

The EIS of DSSC has been explored by Gratzel et.al [22] and this involves four transport processes occurring in 
whole cell: transport of charges at FTO/TiO2 interface, TiO2/electrolyte interface, bulk transport of I

3
-/I- couple at the counter electrode. The transport of charges inside the TiO

electrode contribute to diffusional transport resistance (impedance caused by  is denoted by 

/electrolyte interface gives recombination resistance . Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events. 

or the complete charge transfer at TiO2/FTO interface,   . There will be presence of diffusional 

impedance with recombination resistance  in series and the high value of  increases the electron life time. 
life time results in the appearance of conduction band capacitance at TiO2, and this capacitance is in 

parallel with the diffusional resistance and recombination resistance  as shown in Fig. 3(a). For fractional charge 

arge will be transfer to interface, hence   , and in this case the effect of 

impedance as shown in Fig. 3(b). (there is no separation between 

). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

frequency regions, and the effect of each region is analyzed separately[9-11]. The 
Bode curve can have many frequency dependent elements with each frequency element having a particular slope 

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 

of charge transport at the SC/electrolyte interface are analyzed. In the 
,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 

of IS data. Bisquert [18] has 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

. The trap capacitance is an important parameter that helps in 
s will be elaborated later 

and this involves four transport processes occurring in 
transport of I3

-/I- couple for 
couple at the counter electrode. The transport of charges inside the TiO2 

denoted by ), and the 

. Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events.  

. There will be presence of diffusional 

increases the electron life time. 
, and this capacitance is in 

(a). For fractional charge 

, and in this case the effect of  and  

(b). (there is no separation between  and , the 

). Other part of electrical circuit, like impedance at the FTO/TiO2 interface, 
impedance at the counter electrode and impedance for regeneration of dye will also appear in electrical circuit as 

 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

 and 

frequency-, intermediate- and low-frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope
[17].  
The aim of this review is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate
past [13, 14],  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling
used the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 
capacitance referred to as the chemical capacitance 
distinguishing the transfer of electrons either from valance band or conduction band and thi
in the review [18, 20, 21].  
 

EIS of DSSC 
The EIS of DSSC has been explored by Gratzel et.al
whole cell: transport of charges at FTO/TiO
regeneration of dye, regeneration of I3

electrode contribute to diffusional transport resistance 

recombination reaction at TiO2/electrolyte interface gives recombination resistance 
transport are considered, complete charge transport events and fractional charge transport events. 

For the complete charge transfer at TiO

impedance with recombination resistance 
Large electron life time results in the appearance of conduction band capacitance at TiO

parallel with the diffusional resistance and recombination resistance 

transport, a part of charge will be transfer to interface, hence 

is combined with Gerischer-impedance as shown in F

combined effect of this is ). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 
shown in Fig. 3(a) and (b). 
 

 
Fig.3: equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

from ref.12  

 

frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate of charge transport at the SC/electrolyte interface are analyzed. In the 

,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling of IS data. Bisquert 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

capacitance referred to as the chemical capacitance [19]. The trap capacitance is an important parameter that helps in 
distinguishing the transfer of electrons either from valance band or conduction band and this will be elaborated later 

The EIS of DSSC has been explored by Gratzel et.al [22] and this involves four transport processes occurring in 
whole cell: transport of charges at FTO/TiO2 interface, TiO2/electrolyte interface, bulk transport of I

3
-/I- couple at the counter electrode. The transport of charges inside the TiO

electrode contribute to diffusional transport resistance (impedance caused by  is denoted by 

/electrolyte interface gives recombination resistance . Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events. 

or the complete charge transfer at TiO2/FTO interface,   . There will be presence of diffusional 

impedance with recombination resistance  in series and the high value of  increases the electron life time. 
life time results in the appearance of conduction band capacitance at TiO2, and this capacitance is in 

parallel with the diffusional resistance and recombination resistance  as shown in Fig. 3(a). For fractional charge 

arge will be transfer to interface, hence   , and in this case the effect of 

impedance as shown in Fig. 3(b). (there is no separation between 

). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

frequency regions, and the effect of each region is analyzed separately[9-11]. The 
Bode curve can have many frequency dependent elements with each frequency element having a particular slope 

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 

of charge transport at the SC/electrolyte interface are analyzed. In the 
,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 

of IS data. Bisquert [18] has 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

. The trap capacitance is an important parameter that helps in 
s will be elaborated later 

and this involves four transport processes occurring in 
transport of I3

-/I- couple for 
couple at the counter electrode. The transport of charges inside the TiO2 

denoted by ), and the 

. Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events.  

. There will be presence of diffusional 

increases the electron life time. 
, and this capacitance is in 

(a). For fractional charge 

, and in this case the effect of  and  

(b). (there is no separation between  and , the 

). Other part of electrical circuit, like impedance at the FTO/TiO2 interface, 
impedance at the counter electrode and impedance for regeneration of dye will also appear in electrical circuit as 

 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

 is combined 
with Gerischer-impedance as shown in Fig. 3(b). (there 
is no separation between 

frequency-, intermediate- and low-frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope
[17].  
The aim of this review is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate
past [13, 14],  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling
used the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 
capacitance referred to as the chemical capacitance 
distinguishing the transfer of electrons either from valance band or conduction band and thi
in the review [18, 20, 21].  
 

EIS of DSSC 
The EIS of DSSC has been explored by Gratzel et.al
whole cell: transport of charges at FTO/TiO
regeneration of dye, regeneration of I3

electrode contribute to diffusional transport resistance 

recombination reaction at TiO2/electrolyte interface gives recombination resistance 
transport are considered, complete charge transport events and fractional charge transport events. 

For the complete charge transfer at TiO

impedance with recombination resistance 
Large electron life time results in the appearance of conduction band capacitance at TiO

parallel with the diffusional resistance and recombination resistance 

transport, a part of charge will be transfer to interface, hence 

is combined with Gerischer-impedance as shown in F

combined effect of this is ). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 
shown in Fig. 3(a) and (b). 
 

 
Fig.3: equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

from ref.12  

 

frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate of charge transport at the SC/electrolyte interface are analyzed. In the 

,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling of IS data. Bisquert 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

capacitance referred to as the chemical capacitance [19]. The trap capacitance is an important parameter that helps in 
distinguishing the transfer of electrons either from valance band or conduction band and this will be elaborated later 

The EIS of DSSC has been explored by Gratzel et.al [22] and this involves four transport processes occurring in 
whole cell: transport of charges at FTO/TiO2 interface, TiO2/electrolyte interface, bulk transport of I

3
-/I- couple at the counter electrode. The transport of charges inside the TiO

electrode contribute to diffusional transport resistance (impedance caused by  is denoted by 

/electrolyte interface gives recombination resistance . Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events. 

or the complete charge transfer at TiO2/FTO interface,   . There will be presence of diffusional 

impedance with recombination resistance  in series and the high value of  increases the electron life time. 
life time results in the appearance of conduction band capacitance at TiO2, and this capacitance is in 

parallel with the diffusional resistance and recombination resistance  as shown in Fig. 3(a). For fractional charge 

arge will be transfer to interface, hence   , and in this case the effect of 

impedance as shown in Fig. 3(b). (there is no separation between 

). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

frequency regions, and the effect of each region is analyzed separately[9-11]. The 
Bode curve can have many frequency dependent elements with each frequency element having a particular slope 

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 

of charge transport at the SC/electrolyte interface are analyzed. In the 
,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 

of IS data. Bisquert [18] has 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

. The trap capacitance is an important parameter that helps in 
s will be elaborated later 

and this involves four transport processes occurring in 
transport of I3

-/I- couple for 
couple at the counter electrode. The transport of charges inside the TiO2 

denoted by ), and the 

. Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events.  

. There will be presence of diffusional 

increases the electron life time. 
, and this capacitance is in 

(a). For fractional charge 

, and in this case the effect of  and  

(b). (there is no separation between  and , the 

). Other part of electrical circuit, like impedance at the FTO/TiO2 interface, 
impedance at the counter electrode and impedance for regeneration of dye will also appear in electrical circuit as 

 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

 and 

frequency-, intermediate- and low-frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope
[17].  
The aim of this review is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate
past [13, 14],  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling
used the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 
capacitance referred to as the chemical capacitance 
distinguishing the transfer of electrons either from valance band or conduction band and thi
in the review [18, 20, 21].  
 

EIS of DSSC 
The EIS of DSSC has been explored by Gratzel et.al
whole cell: transport of charges at FTO/TiO
regeneration of dye, regeneration of I3

electrode contribute to diffusional transport resistance 

recombination reaction at TiO2/electrolyte interface gives recombination resistance 
transport are considered, complete charge transport events and fractional charge transport events. 

For the complete charge transfer at TiO

impedance with recombination resistance 
Large electron life time results in the appearance of conduction band capacitance at TiO

parallel with the diffusional resistance and recombination resistance 

transport, a part of charge will be transfer to interface, hence 

is combined with Gerischer-impedance as shown in F

combined effect of this is ). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 
shown in Fig. 3(a) and (b). 
 

 
Fig.3: equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

from ref.12  

 

frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate of charge transport at the SC/electrolyte interface are analyzed. In the 

,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling of IS data. Bisquert 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

capacitance referred to as the chemical capacitance [19]. The trap capacitance is an important parameter that helps in 
distinguishing the transfer of electrons either from valance band or conduction band and this will be elaborated later 

The EIS of DSSC has been explored by Gratzel et.al [22] and this involves four transport processes occurring in 
whole cell: transport of charges at FTO/TiO2 interface, TiO2/electrolyte interface, bulk transport of I

3
-/I- couple at the counter electrode. The transport of charges inside the TiO

electrode contribute to diffusional transport resistance (impedance caused by  is denoted by 

/electrolyte interface gives recombination resistance . Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events. 

or the complete charge transfer at TiO2/FTO interface,   . There will be presence of diffusional 

impedance with recombination resistance  in series and the high value of  increases the electron life time. 
life time results in the appearance of conduction band capacitance at TiO2, and this capacitance is in 

parallel with the diffusional resistance and recombination resistance  as shown in Fig. 3(a). For fractional charge 

arge will be transfer to interface, hence   , and in this case the effect of 

impedance as shown in Fig. 3(b). (there is no separation between 

). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

frequency regions, and the effect of each region is analyzed separately[9-11]. The 
Bode curve can have many frequency dependent elements with each frequency element having a particular slope 

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 

of charge transport at the SC/electrolyte interface are analyzed. In the 
,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 

of IS data. Bisquert [18] has 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

. The trap capacitance is an important parameter that helps in 
s will be elaborated later 

and this involves four transport processes occurring in 
transport of I3

-/I- couple for 
couple at the counter electrode. The transport of charges inside the TiO2 

denoted by ), and the 

. Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events.  

. There will be presence of diffusional 

increases the electron life time. 
, and this capacitance is in 

(a). For fractional charge 

, and in this case the effect of  and  

(b). (there is no separation between  and , the 

). Other part of electrical circuit, like impedance at the FTO/TiO2 interface, 
impedance at the counter electrode and impedance for regeneration of dye will also appear in electrical circuit as 

 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

, the combined 
effect of this is 

frequency-, intermediate- and low-frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope
[17].  
The aim of this review is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate
past [13, 14],  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling
used the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 
capacitance referred to as the chemical capacitance 
distinguishing the transfer of electrons either from valance band or conduction band and thi
in the review [18, 20, 21].  
 

EIS of DSSC 
The EIS of DSSC has been explored by Gratzel et.al
whole cell: transport of charges at FTO/TiO
regeneration of dye, regeneration of I3

electrode contribute to diffusional transport resistance 

recombination reaction at TiO2/electrolyte interface gives recombination resistance 
transport are considered, complete charge transport events and fractional charge transport events. 

For the complete charge transfer at TiO

impedance with recombination resistance 
Large electron life time results in the appearance of conduction band capacitance at TiO

parallel with the diffusional resistance and recombination resistance 

transport, a part of charge will be transfer to interface, hence 

is combined with Gerischer-impedance as shown in F

combined effect of this is ). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 
shown in Fig. 3(a) and (b). 
 

 
Fig.3: equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

from ref.12  

 

frequency regions, and the effect of each region is analyzed separately
Bode curve can have many frequency dependent elements with each frequency element having a particular slope

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 
space charge capacitance that affects the rate of charge transport at the SC/electrolyte interface are analyzed. In the 

,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 
take into account the space charge capacitance and Helmholtz capacitance for modeling of IS data. Bisquert 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

capacitance referred to as the chemical capacitance [19]. The trap capacitance is an important parameter that helps in 
distinguishing the transfer of electrons either from valance band or conduction band and this will be elaborated later 

The EIS of DSSC has been explored by Gratzel et.al [22] and this involves four transport processes occurring in 
whole cell: transport of charges at FTO/TiO2 interface, TiO2/electrolyte interface, bulk transport of I

3
-/I- couple at the counter electrode. The transport of charges inside the TiO

electrode contribute to diffusional transport resistance (impedance caused by  is denoted by 

/electrolyte interface gives recombination resistance . Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events. 

or the complete charge transfer at TiO2/FTO interface,   . There will be presence of diffusional 

impedance with recombination resistance  in series and the high value of  increases the electron life time. 
life time results in the appearance of conduction band capacitance at TiO2, and this capacitance is in 

parallel with the diffusional resistance and recombination resistance  as shown in Fig. 3(a). For fractional charge 

arge will be transfer to interface, hence   , and in this case the effect of 

impedance as shown in Fig. 3(b). (there is no separation between 

). Other part of electrical circuit, like impedance at the FTO/TiO
impedance at the counter electrode and impedance for regeneration of dye will also appear in 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

frequency regions, and the effect of each region is analyzed separately[9-11]. The 
Bode curve can have many frequency dependent elements with each frequency element having a particular slope 

w is to explore the applicability of EIS for discrimination of the processes occurring at the 
SC/electrolyte interface of DSSC and PEC. Various processes like trap state formation, electron hole recombination, 

of charge transport at the SC/electrolyte interface are analyzed. In the 
,  the effect of trap capacitance has not been taken into consideration and instead,  the authors generally 

of IS data. Bisquert [18] has 
sed the effect of trap capacitance in EIS and has shown that the capacitance obtained at these states are volumetric 

. The trap capacitance is an important parameter that helps in 
s will be elaborated later 

and this involves four transport processes occurring in 
transport of I3

-/I- couple for 
couple at the counter electrode. The transport of charges inside the TiO2 

denoted by ), and the 

. Two types of charge 
transport are considered, complete charge transport events and fractional charge transport events.  

. There will be presence of diffusional 

increases the electron life time. 
, and this capacitance is in 

(a). For fractional charge 

, and in this case the effect of  and  

(b). (there is no separation between  and , the 

). Other part of electrical circuit, like impedance at the FTO/TiO2 interface, 
impedance at the counter electrode and impedance for regeneration of dye will also appear in electrical circuit as 

 

equivalent circuit of DSSC a) for complete transfer of charges under illumination b) part of charges transferred. Adapted 

 ). Other part of electrical circuit, like 
impedance at the FTO/TiO2 interface, impedance at the 
counter electrode and impedance for regeneration of dye 
will also appear in electrical circuit as shown in Fig. 3(a) 
and (b).

Fig.3: equivalent circuit of DSSC a) for complete transfer of charges 
under illumination, b) part of charges transferred. Adapted from 
ref.12 

Fig.4: Porous TiO2 electrode with 1) diffusion only, 2) diffusion with 
the recombination. Reprinted with permission from ref 15. Copyright 
2002 American Chemical Society

Cao et. al.[10] demonstrated that the EIS at the SC/electrolyte interface shows two semicircles and interpreted that 
the low frequency region corresponds to charge transfer and high frequency  region corresponds to adsorption. 
However, when EIS was conducted in dark, similar pattern of impedance was obtained, suggesting the presence of 
some another phenomena. They suggested that the high frequency semicircle is because of space charge and surface 
state charge transfer within the semiconductor, while the semicircle at low frequency is because of the charges 
leaving the semiconductor. Takehito Mitate et.al[23] used the EIS response of the DSSC and the linear variation of 
interface resistance with potential indicated diode-like behavior. Bisquert et.al [11] studied the effect of diffusion 
and recombination inside the TiO2 electrode by using EIS analysis with a transmission line analysis model. The thin 
film of TiO2 electrode is in contact with electrolyte on one side and the other part in contact with the substrate (Fig. 
4), with no electronic charges crossing the interface at the electrolyte side.  
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Transmission line representation with diffusion is depicted in Fig. 5(a), the corresponding impedance is obtained by 
balancing the charges inside the electrode (mode of transport of charges is diffusion only) given by,                (1) 
At high frequency,               (2) 

Where  is characteristic frequency for diffusion and equals to   , D is diffusion coefficient for electron 

transfer and L is the thickness of photoelectrode,  is the diffusional resistance and is dependent on the Fermi 

energy distribution. From Fig. 5(a), =L.,  is the diffusional resistance per unit length. The above 

impedance at high frequency contains only the diffusional contribution and this response is valid till     ( is 

the frequency applied), and at low frequency i.e    , the response is capacitative as shown in the Nyquist plot 
(Fig.5(a))  which is given by,              (3)  is the free charge capacitance, and it’s given by,            (4) 

For the case of diffusion with recombination inside the TiO2 electrode, the mode of transport of charges contains 
recombination inside the TiO2 electrode, the EIS response contains an additional term that takes into account the 
effect of the recombination resistance. The transmission line and the Nyquist plot is shown in Fig. 6(a), and it is 
given by, 
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Transmission line representation with diffusion is depicted in Fig. 5(a), the corresponding impedance is obtained by 
balancing the charges inside the electrode (mode of transport of charges is diffusion only) given by,                (1) 
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Where  is characteristic frequency for diffusion and equals to   , D is diffusion coefficient for electron 

transfer and L is the thickness of photoelectrode,  is the diffusional resistance and is dependent on the Fermi 

energy distribution. From Fig. 5(a), =L.,  is the diffusional resistance per unit length. The above 

impedance at high frequency contains only the diffusional contribution and this response is valid till     ( is 

the frequency applied), and at low frequency i.e    , the response is capacitative as shown in the Nyquist plot 
(Fig.5(a))  which is given by,              (3)  is the free charge capacitance, and it’s given by,            (4) 

For the case of diffusion with recombination inside the TiO2 electrode, the mode of transport of charges contains 
recombination inside the TiO2 electrode, the EIS response contains an additional term that takes into account the 
effect of the recombination resistance. The transmission line and the Nyquist plot is shown in Fig. 6(a), and it is 
given by, 
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Transmission line representation with diffusion is depicted in Fig. 5(a), the corresponding impedance is obtained by 
balancing the charges inside the electrode (mode of transport of charges is diffusion only) given by,                (1) 
At high frequency,               (2) 
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transfer and L is the thickness of photoelectrode,  is the diffusional resistance and is dependent on the Fermi 

energy distribution. From Fig. 5(a), =L.,  is the diffusional resistance per unit length. The above 
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(Fig.5(a))  which is given by,              (3)  is the free charge capacitance, and it’s given by,            (4) 

For the case of diffusion with recombination inside the TiO2 electrode, the mode of transport of charges contains 
recombination inside the TiO2 electrode, the EIS response contains an additional term that takes into account the 
effect of the recombination resistance. The transmission line and the Nyquist plot is shown in Fig. 6(a), and it is 
given by, 
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Transmission line representation with diffusion is depicted in Fig. 5(a), the corresponding impedance is obtained by 
balancing the charges inside the electrode (mode of transport of charges is diffusion only) given by,                (1) 
At high frequency,               (2) 

Where  is characteristic frequency for diffusion and equals to   , D is diffusion coefficient for electron 

transfer and L is the thickness of photoelectrode,  is the diffusional resistance and is dependent on the Fermi 

energy distribution. From Fig. 5(a), =L.,  is the diffusional resistance per unit length. The above 

impedance at high frequency contains only the diffusional contribution and this response is valid till     ( is 

the frequency applied), and at low frequency i.e    , the response is capacitative as shown in the Nyquist plot 
(Fig.5(a))  which is given by,              (3)  is the free charge capacitance, and it’s given by,            (4) 

For the case of diffusion with recombination inside the TiO2 electrode, the mode of transport of charges contains 
recombination inside the TiO2 electrode, the EIS response contains an additional term that takes into account the 
effect of the recombination resistance. The transmission line and the Nyquist plot is shown in Fig. 6(a), and it is 
given by, 
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Transmission line representation with diffusion is depicted in Fig. 5(a), the corresponding impedance is obtained by 
balancing the charges inside the electrode (mode of transport of charges is diffusion only) given by,                (1) 
At high frequency,               (2) 

Where  is characteristic frequency for diffusion and equals to   , D is diffusion coefficient for electron 

transfer and L is the thickness of photoelectrode,  is the diffusional resistance and is dependent on the Fermi 

energy distribution. From Fig. 5(a), =L.,  is the diffusional resistance per unit length. The above 

impedance at high frequency contains only the diffusional contribution and this response is valid till     ( is 

the frequency applied), and at low frequency i.e    , the response is capacitative as shown in the Nyquist plot 
(Fig.5(a))  which is given by,              (3)  is the free charge capacitance, and it’s given by,            (4) 

For the case of diffusion with recombination inside the TiO2 electrode, the mode of transport of charges contains 
recombination inside the TiO2 electrode, the EIS response contains an additional term that takes into account the 
effect of the recombination resistance. The transmission line and the Nyquist plot is shown in Fig. 6(a), and it is 
given by, 
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Transmission line representation with diffusion is depicted in Fig. 5(a), the corresponding impedance is obtained by 
balancing the charges inside the electrode (mode of transport of charges is diffusion only) given by,                (1) 
At high frequency,               (2) 

Where  is characteristic frequency for diffusion and equals to   , D is diffusion coefficient for electron 

transfer and L is the thickness of photoelectrode,  is the diffusional resistance and is dependent on the Fermi 

energy distribution. From Fig. 5(a), =L.,  is the diffusional resistance per unit length. The above 

impedance at high frequency contains only the diffusional contribution and this response is valid till     ( is 

the frequency applied), and at low frequency i.e    , the response is capacitative as shown in the Nyquist plot 
(Fig.5(a))  which is given by,              (3)  is the free charge capacitance, and it’s given by,            (4) 

For the case of diffusion with recombination inside the TiO2 electrode, the mode of transport of charges contains 
recombination inside the TiO2 electrode, the EIS response contains an additional term that takes into account the 
effect of the recombination resistance. The transmission line and the Nyquist plot is shown in Fig. 6(a), and it is 
given by, 
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Cao et. al.[10] demonstrated that the EIS at the SC/electrolyte interface shows two semicircles and interpreted that 
the low frequency region corresponds to charge transfer and high frequency  region corresponds to adsorption. 
However, when EIS was conducted in dark, similar pattern of impedance was obtained, suggesting the presence of 
some another phenomena. They suggested that the high frequency semicircle is because of space charge and surface 
state charge transfer within the semiconductor, while the semicircle at low frequency is because of the charges 
leaving the semiconductor. Takehito Mitate et.al[23] used the EIS response of the DSSC and the linear variation of 
interface resistance with potential indicated diode-like behavior. Bisquert et.al [11] studied the effect of diffusion 
and recombination inside the TiO2 electrode by using EIS analysis with a transmission line analysis model. The thin 
film of TiO2 electrode is in contact with electrolyte on one side and the other part in contact with the substrate (Fig. 
4), with no electronic charges crossing the interface at the electrolyte side.  
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Transmission line representation with diffusion is depicted in Fig. 5(a), the corresponding impedance is obtained by 
balancing the charges inside the electrode (mode of transport of charges is diffusion only) given by,                (1) 
At high frequency,               (2) 

Where  is characteristic frequency for diffusion and equals to   , D is diffusion coefficient for electron 

transfer and L is the thickness of photoelectrode,  is the diffusional resistance and is dependent on the Fermi 

energy distribution. From Fig. 5(a), =L.,  is the diffusional resistance per unit length. The above 
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(Fig.5(a))  which is given by,              (3)  is the free charge capacitance, and it’s given by,            (4) 

For the case of diffusion with recombination inside the TiO2 electrode, the mode of transport of charges contains 
recombination inside the TiO2 electrode, the EIS response contains an additional term that takes into account the 
effect of the recombination resistance. The transmission line and the Nyquist plot is shown in Fig. 6(a), and it is 
given by, 
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leaving the semiconductor. Takehito Mitate et.al[23] used the EIS response of the DSSC and the linear variation of 
interface resistance with potential indicated diode-like behavior. Bisquert et.al [11] studied the effect of diffusion 
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4), with no electronic charges crossing the interface at the electrolyte side.  
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Transmission line representation with diffusion is depicted in Fig. 5(a), the corresponding impedance is obtained by 
balancing the charges inside the electrode (mode of transport of charges is diffusion only) given by,                (1) 
At high frequency,               (2) 

Where  is characteristic frequency for diffusion and equals to   , D is diffusion coefficient for electron 
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Transmission line representation with diffusion is depicted in Fig. 5(a), the corresponding impedance is obtained by 
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Cao et. al.[10] demonstrated that the EIS at the SC/electrolyte interface shows two semicircles and interpreted that 
the low frequency region corresponds to charge transfer and high frequency  region corresponds to adsorption. 
However, when EIS was conducted in dark, similar pattern of impedance was obtained, suggesting the presence of 
some another phenomena. They suggested that the high frequency semicircle is because of space charge and surface 
state charge transfer within the semiconductor, while the semicircle at low frequency is because of the charges 
leaving the semiconductor. Takehito Mitate et.al[23] used the EIS response of the DSSC and the linear variation of 
interface resistance with potential indicated diode-like behavior. Bisquert et.al [11] studied the effect of diffusion 
and recombination inside the TiO2 electrode by using EIS analysis with a transmission line analysis model. The thin 
film of TiO2 electrode is in contact with electrolyte on one side and the other part in contact with the substrate (Fig. 
4), with no electronic charges crossing the interface at the electrolyte side.  
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Fig.5: (a) Transmission line representation of porous electrode with 
assumption that no charges are crossing the interface, (b) Nyquist plot 
representation of the TiO2 porous electrode showing two distinguishable 
response. Reprinted with permission from ref 15. Copyright 2002 
American Chemical Society. 

Fig. 6: a) transmission line analysis of diffusion plus recombination in 
porous TiO2 electrode, b) Nyquist plot of TiO2 electrode, diffusion plus 
recombination of charges c) inside of circular part of fig (b). Reprinted 
with permission from ref 15. Copyright 2002 American Chemical 
Society
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Further Bisquert et.al [24] used the above analysis to 
study the EIS of DSSC. In DSSC, the working electrode 
is TiO2 and the counter electrode is Pt, the electrolyte is 
0.5M LiI, 0.05M I2 in 3-MPN (3-methoxypropionitrile). The 
EIS response of the whole DSSC set-up will contain the 
response from working electrode, counter electrode and 
the electrolyte. The transmission line representation of the 
DSSC working electrode is shown in Fig.7.

Fig.7: Transmission line representation of DSSC. Reprinted with 
permission from ref 16. Copyright 2005 American Chemical Society

The Nyquist plot with potential variation is shown in 
Fig.8, and from these curves it is clear that up to potential 0.4, 
there is almost no change in shape of the Nyquist plot. Only 
one large semicircle is observed predominantly and the 
small semicircle at the high frequency (not clearly visible) 
in the Fig. 8(a-c) is due to the counter electrode reaction. In 
this zone, the TiO2 working electrode acts as an insulator 
and charge transport occurs only in the part of substrate 
where TiO2 has not been deposited (Fig.5 RTCOCTCO part, 
RTCO is recombination resistance at bare TCO surface and 
CTCO is the corresponding capacitance). At higher potentials 
as shown in Fig. 8(d), the charges transport occurs through 
TiO2 by diffusion and recombination mechanism. The 
Nyquist plot has 45o line at higher frequency, the high 

 Fig.8: Impedance Spectra of DSSC at different potential (potential is shown inside the Nyquist 
plot). Reprinted with permission from ref 16. Copyright 2005 American Chemical Society.

high frequency response is given by equation (2) that shows Warburg type of response (note that in equation.2  

becomes     )  low frequency is the semicircular part.  If   , the diffusion time is smaller than the 
recombination time, the low frequency part is dominated by recombination reaction (from equation(6)). On the other 

hand, if   , then the low frequency response is of Gerischer type response, the low frequency part is due to 
the diffusion plus recombination reaction as described by equation (7). On further increase in the potential, (Fig. 8 e) 
the Nyquist plot contains clearly three regime, high frequency regime is due to the counter electrode reaction, 
intermediate frequency regime is due to the diffusion-recombination reaction and low frequency regime is due to the 
electrolyte decomposition. 
  

 
Fig.8: Impedance Spectra of DSSC at different potential (potential is shown inside the Nyquist plot). Reprinted with permission 

from ref 16. Copyright 2005 American Chemical Society. 

 
 

EIS of PEC 
In PEC system [5, 11-13, 19-21, 25], the SC electrode can be under DC potential bias as well as the irradiation. The 
OER reaction requires four holes from SC anode, these holes are created with help of irradiation and their energy 
levels are modified by external bias. The transport of charges through the interface (SC electrode/electrolyte) is 
being modeled here. On irradiation, there is generation of electron-hole pair, the electron can either go to the trap 
state or the conduction band, holes are in the valance band. Following are the generalized possibilities of transfer of 
holes from SC/electrolyte interface [25, 26]: 
 

1. Hole can transfer from the trapped state with electron and hole recombination in bulk 
2. Hole can transfer from the valance band with electron and hole recombination in bulk 
3. Hole will not transfer from valance band or trapped state (only electron hole recombination takes place in 

bulk) 
4. Hole can transfer from the trapped state without electron and hole recombination in bulk 
5. Hole can transfer from the valance band without electron and hole recombination in bulk 

If the SC electrode is very thin and of less than the space charge layer thickness then the recombination in bulk is 
neglected. For PEC water splitting the electrode thickness is kept less than space charge layer thickness. From the 
above case, case 4 and 5 represents the PEC water splitting mechanism and modeled by Bisquert et.al.[18]. The 
energy diagram and electrical equivalent circuit is shown in the following Fig.9. 
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 , then the low frequency response is 
of Gerischer type response, the low frequency part is due 
to the diffusion plus recombination reaction as described 
by equation (7). On further increase in the potential, (Fig. 
8 e) the Nyquist plot contains clearly three regime, high 
frequency regime is due to the counter electrode reaction, 
intermediate frequency regime is due to the diffusion-
recombination reaction and low frequency regime is due 
to the electrolyte decomposition.

3. EIS of PEC
In PEC system [5, 11-13, 19-21, 25], the SC electrode 

can be under DC potential bias as well as the irradiation. 
The OER reaction requires four holes from SC anode, 
these holes are created with help of irradiation and their 
energy levels are modified by external bias. The transport 
of charges through the interface (SC electrode/electrolyte) 
is being modeled here. On irradiation, there is generation 
of electron-hole pair, the electron can either go to the trap 
state or the conduction band, holes are in the valance band. 
Following are the generalized possibilities of transfer of 
holes from SC/electrolyte interface [25, 26]:

1.	 Hole can transfer from the trapped state with electron 
and hole recombination in bulk

2.	 Hole can transfer from the valance band with electron 
and hole recombination in bulk

3.	 Hole will not transfer from valance 
band or trapped state (only electron 
hole recombination takes place in 
bulk)

4.	 Hole can transfer from the trapped 
state without electron and hole 
recombination in bulk

5.	 Hole can transfer from the valance 
band without electron and hole 
recombination in bulk
If the SC electrode is very thin 

and of less than the space charge layer 
thickness then the recombination 
in bulk is neglected. For PEC water 
splitting the electrode thickness is 
kept less than space charge layer 
thickness. From the above case, case 
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4 and 5 represents the PEC water splitting mechanism 
and modeled by Bisquert et.al.[18]. The energy diagram 
and electrical equivalent circuit is shown in the following 
Fig.9.

The dynamics of electron density at SC side is given 
by,
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1. Introduction
The dielectric response of most of the condensed 

matter system shows a remarkable degree of features in 
that its frequency dependence often follows deviation from 
classically expected Debye response, which in the time domain 
corresponds to exponential decay.  The deviation of dielectric 
response from the Debye feature, in general, is referred as non-
Debye relaxation (NDR) or many-body relaxation [1,2]. Their 
interpretation of temperature dependence is carried out using 
either individual or combination of time-honoured models 
like: (i) Cole-Cole (CC) [3-5] (ii) the Cole-Davidson (CD) 
[6] (iii) Havriliak-Negami (HN) [7] dielectric functions (iv) 
Kohlrausch-Williams-Watts (KWW) stretched exponential 
function [8,9] (v) Jonscher’s universal dielectric response 
(UDR) [10-12] and (vi) Ngai’s coupling model (CM) [2,13-
15], (vii) Dyre’s random energy barrier model [16-18]. Each 
function has different level of significance for the physical 
process of NDR and no consensus has been arrived so far. 
Therefore, there is a need of unique NDR function connecting 
time and frequency domains with generally acceptable 
microscopic physical process. In present work, we propose 
NDR model considering the intermolecular Debye type 
dipole-dipole interaction generated fractional Debye type 
dipole or non-Debye dipole in coupled form by considering 
energy criterion in the form of conservation of energy and 
moment.
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Dielectric Loss
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 Abstract
The dielectric response for a broad range of systems proves the existence of a remarkable features of 
frequency and time response which is basically incompatible with the variety of currently used time-honored 
(i) Cole-Cole   (ii) Cole-Davidson (iii) Havriliak-Negami dielectric functions (iv) Kohlrausch-Williams-Watts 
stretched exponential function (v) Jonscher’s universal dielectric response (vi) Ngai’s coupling model and 
(vii) Dyre’s random energy barrier model. The existing interpretations for these models/functions are: 
(a) distributions of relaxation times and (b) the energy criterion. Still, these empirical models and their 
theoretical interpretations are subject of debate in the literature and remain disjointed, and adapted to the 
individual materials. The purpose of paper is to present a novel concept of “Debye and fractional Debye 
type dipole” dielectric law of relaxation to the interpretation of the dielectric response of solids. The 
dielectric relaxation processes is based on Debye type dipole-dipole interaction initiated fractional Debye 
type dipoles in the wide range of materials, covering very diverse materials with physical processes-all 
of which show a remarkable features of the proposed relaxation behavior. The complex dielectric and 
relaxation functions, and their energy criterion in terms of the Debye and the fractional Debye dipole 
process provides a new physical insight for the α, β, γ, δ relaxations, excess wing and shoulder structure 
in the dielectric loss of glass formers, plastic crystals, drugs, polymers, etc. The model shows an excellent 
agreement with experimentally observed dielectric spectra of wide variety of materials.

The proposed concepts constitutes a “innovation” in 
thinking about dielectric relaxation and it moves away 
from the former interpretations which were depend on 
heavily on the concept of (a) distributions of relaxation 
times as used in CC, CD, HN, and KWW, (b) the energy 
criterion as used in Jonscher’s UDR. The Debye-like 
processes supposed to be coexisting in CC, CD, HN, KWW 
models, whereas, Debye like process do not coexisting 
in the energy criterion based Jonscher’s UDR and these 
models constitute a superficially plausible models. The 
existing distribution of relaxation time interpretation and 
energy criterion based models for the NDR do not stand 
up to critical examination and that a different approach 
is therefore essential. Our proposed model and new 
interpretation is based on the unique property of molecular 
level Debye type dipole and its interaction caused fractional 
Debye type dipole relaxation in coupled form of fractional 
Debye type dipole relaxation law in frequency that the 
ratio of the imaginary to the real parts of the complex 
dielectric is dependent on frequency, in sharp contrast to 
the Jonscher’s UDR where this ratio is independent of wide 
range of frequency. Expressions for the complex dielectric 
and relaxation functions have been derived for the Debye 
and fractional Debye type dipole processes. Salient features 
of the proposed complex dielectric and relaxation functions 
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are described and compared with time-honoured models. 
There are controversial results reported and debated in the 
literature on the interpretation of α, β, γ, and δ relaxations, 
and excess wing of dielectric loss data of liquids, glass 
formers, polymers, drugs, plastic crystals etc. The proposed 
model certainly provide new physical insight for the 
NDR and expected to answer many issues related to the 
interpretation of α, β, γ, and δ relaxations, and clarify 
physical picture for excess wing.

2.  Debye and non-Debye dielectric functions 
Debye’s original model of dipolar dielectric response 

consists of a set of identical non-interacting dipoles free to 
rotate against some viscous resistance in fluid-like medium 
by thermal excitation between two preferred orientations 
separated by a potential barrier, a situation more likely 
to be found in solids. In a log(frequency) vs log(dielectric 
loss) plot the Debye dielectric loss is symmetric with 
respect to loss peak having slope +1 below the loss peak 
and -1 above loss peak and has full width at half maximum 
(FWHM) 1.144 decades.  Typical Debye type features 
of dipolar behaviour may be found in few polymers in 
which the dipole may be well characterized both in type 
and in density. However, the dielectric response in several 
polymers and other different system departs strongly from 
Debye features. 

Cole and Cole [3] (CC) suggested the empirical 
dielectric function to account for the deviation from Debye 
features as:  
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where 0≤αCC<1 is a CC parameter depends on material, 

temperature and pressure, and τCC is the CC type relaxation 
time, ∆εCC=εs-ε∞, CC dielectric relaxation strength, εs and 
ε∞ are respectively the high and low frequency limits. In a 
log(frequency) vs log(dielectric loss) plot the CC dielectric 
loss is symmetric with respect to loss peak, having slope 
(1-αCC)<1 below the loss peak and  (1-αCC)<-1 above loss 
peak, and having FWHM greater than the Debye dielectric 
loss FWHM of 1.144 decades.
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and Davidson [6] (CD) suggested the empirical formula 
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where 0<βCD≤1, is a CD parameters depends on 
material, temperature and pressure and τCD is the CD 
type relaxation time, ∆εCD=εs-ε∞, CD dielectric relaxation 
strength, εs and ε∞ are respectively the high and low 
frequency limits. In a log(ω) vs log(dielectric loss) plot 
the CD dielectric loss is asymmetric with respect to loss 

peak having slope 1 below the loss peak and < -1 above 
loss peak. 

Some super-cooled systems, polymers and plastic 
crystals and glasses have CC type spectra at low 
frequencies and CD type spectra at high frequencies. In 
work of Havriliak and Negami [7] proposed the following 
empirical form dielectric function:
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where 0≤αΗΝ<1 and 0<βHN≤1 are parameters depends 
on material, temperature and pressure and  τHN is HN type 
relaxation time. In a log(frequency) vs log(dielectric loss) 
plot the HN dielectric loss is asymmetric with respect to 
loss peak having slope <1 below the loss peak and < -1 
above loss peak and having FWHM greater than the Debye 
dielectric loss FWHM of 1.144 decades.

The inverse Laplace transform of Eqs. (1)-(3) into the 
time domain are not analytical functions. For the time 
dependence polarization current description KKW [8,9] 
empirical function:    
 
is used, where 0<�KWW�1, the exponent 
stretching is the relaxation function and 
by assuming a superposition of exponentials with dist
 

Jonscher has reviewed phenomenology of dielectric response in wide range materials. He has derived the 
so-called “universal dielectric response” by examining the dielectric loss in the frequency and time domains and 
tentatively modelled in terms partial charge screening process [10
manifestation of a universal mechanism in which the energy loss per cycle to the energy stored per cycle is 
independent of frequency rather than being the
relaxation time as in CC, CD, HN and KWW. 
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where m and (1-n) are both smaller than unity, 
log(frequency) vs log(dielectric loss) plot the UDR is asymmetric with respect to loss peak having slope m<1 below 
the loss peak and (1-n)< -1 above loss peak and having FWHM greater than the De
1.144 decades, and normally m is greater than n.
 

i(t)�[(t�p)
1+m+(t�p)

n]-1.   
 
A change in slope has been shown in double logarithmic time
displacement current in the material medium. 
not related each other, and the exponents 
interpretation is still debatable in the literature.  
 
3.  Debye and fractional Debye type dipole dielectric functions

3.1  Debye and fractional Debye type dipole process

Let the condensed matter system consist of molecules with reorientation o
dipole moment G0. In an electric field under a given thermodynamic condition, the instantaneous
moment G0 is not possible for a given molecular process due to intermolecular Debye type dipole
interactions. The fraction of Debye type dipole that has not been transferred instantaneously is defined as ±
gd)G0, where 0<gd<1.  The consequence of these interaction is the shift in the magnitude of Debye dipole moment 
G0 by an equal magnitude of ±G=(1
interaction as fractional Debye type dipoles [19,20]:
 

G+=G0+G=(2-gd)G0, and G�=G0-G=gd

 

where N number of Debye type G0 per unit volume and becomes N/2 pair
is increased and decreased respectively by a factor of (1
evolution in condensed matter systems lead to potential energy landscaping, a complicated dependence of en
configuration, and a change in configurational entropy and a change in fragility, a measure of rapidity with which 
the liquid’s properties like viscosity changes.  
 



 

 
 
 
 
 

 ,          

1, the exponent �KWW is a stretching parameter, and lower the �KWW

stretching is the relaxation function and �KWW is the KKW relaxation time. The stretching can formally be explained 
by assuming a superposition of exponentials with distribution of relaxation times. 

Jonscher has reviewed phenomenology of dielectric response in wide range materials. He has derived the 
called “universal dielectric response” by examining the dielectric loss in the frequency and time domains and 

ly modelled in terms partial charge screening process [10-12]. Jonscher found that the power law is a 
manifestation of a universal mechanism in which the energy loss per cycle to the energy stored per cycle is 
independent of frequency rather than being the result of superposition of Debye like loss with distribution of 
relaxation time as in CC, CD, HN and KWW. Jonscher’s empirical form of dielectric loss is: 

          

n) are both smaller than unity, �1,��2 and �p are thermally activated hopping parameters. In a 
log(frequency) vs log(dielectric loss) plot the UDR is asymmetric with respect to loss peak having slope m<1 below 

1 above loss peak and having FWHM greater than the Debye dielectric loss FWHM of 
1.144 decades, and normally m is greater than n. The empirical form for polarization current Eq. (5) is proposed as 

      

A change in slope has been shown in double logarithmic time-domain plot with sum of two consecutive independent 
displacement current in the material medium. Jonscher’s empirical form of dielectric function exponent’s (n, m) are 

related each other, and the exponents �CC, �CC, (�HN, �HN) and �KWW and their use in dielectric
interpretation is still debatable in the literature.   
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is not possible for a given molecular process due to intermolecular Debye type dipole
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<1.  The consequence of these interaction is the shift in the magnitude of Debye dipole moment 
=(1-gd)G0 as illustrated in Fig.1. Debye type G0 dipoles evolved with these 

interaction as fractional Debye type dipoles [19,20]: 

dG0,                    (7) 

per unit volume and becomes N/2 pairs of G±, and dipole moment of 
is increased and decreased respectively by a factor of (1-gd) with respect to G0. These type of dipole moment 
evolution in condensed matter systems lead to potential energy landscaping, a complicated dependence of en
configuration, and a change in configurational entropy and a change in fragility, a measure of rapidity with which 
the liquid’s properties like viscosity changes.   
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is used, where 0<βKWW≤1, the exponent βKWW is a stretching 
parameter, and lower the βKWW value the more stretching 
is the relaxation function and τKWW is the KKW relaxation 
time. The stretching can formally be explained by assuming 
a superposition of exponentials with distribution of 
relaxation times.

Jonscher has reviewed phenomenology of dielectric 
response in wide range materials. He has derived the 
so-called “universal dielectric response” by examining 
the dielectric loss in the frequency and time domains and 
tentatively modelled in terms partial charge screening 
process [10-12]. Jonscher found that the power law is a 
manifestation of a universal mechanism in which the 
energy loss per cycle to the energy stored per cycle is 
independent of frequency rather than being the result 
of superposition of Debye like loss with distribution of 
relaxation time as in CC, CD, HN and KWW. Jonscher’s 
empirical form of dielectric loss is:
ε''(ω)∝[(ω/ω2)-m+(ω/ω1)(1-n)]-1		                          (5)

where m and (1-n) are both smaller than unity, ω1, 
ω2 and ωp are thermally activated hopping parameters. 
In a log(frequency) vs log(dielectric loss) plot the UDR is 
asymmetric with respect to loss peak having slope m<1 
below the loss peak and (1-n)< -1 above loss peak and 
having FWHM greater than the Debye dielectric loss 
FWHM of 1.144 decades, and normally m is greater than 
n. The empirical form for polarization current Eq. (5) is 
proposed as 

i(t)∝[(tωp)1+m+(tωp)n]-1.		                                         (6)
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A change in slope has been shown in double 
logarithmic time-domain plot with sum of two consecutive 
independent displacement current in the material medium. 
Jonscher’s empirical form of dielectric function exponent’s 
(n, m) are not related each other, and the exponents αCC, 
βCC, (αHN, βHN) and βKWW and their use in dielectric loss data 
interpretation is still debatable in the literature.  

3.  Debye and fractional Debye type dipole 
dielectric functions
3.1 Debye and fractional Debye type dipole process

Let the condensed matter system consist of molecules 
with reorientation of dipolar entities with Debye type 
dipole moment G0. In an electric field under a given 
thermodynamic condition, the instantaneous transfer of 
dipole moment G0 is not possible for a given molecular 
process due to intermolecular Debye type dipole-dipole 
interactions. The fraction of Debye type dipole that has not 
been transferred instantaneously is defined as ±G=(1-gd)
G0, where 0<gd<1.  The consequence of these interaction is 
the shift in the magnitude of Debye dipole moment G0 by 
an equal magnitude of ±G=(1-gd)G0 as illustrated in Fig.1. 
Debye type G0 dipoles evolved with these interaction as 
fractional Debye type dipoles [19,20]:

G+=G0+G=(2-gd)G0, and G−=G0-G=gdG0,	                        (7)

where N number of Debye type G0 per unit volume 
and becomes N/2 pairs of G±, and dipole moment of G+ 
and G− is increased and decreased respectively by a factor 
of (1-gd) with respect to G0. These type of dipole moment 
evolution in condensed matter systems lead to potential 
energy landscaping, a complicated dependence of energy 
on configuration, and a change in configurational entropy 
and a change in fragility, a measure of rapidity with which 
the liquid’s properties like viscosity changes.  

The average dipole moment is determined by using 
Langevin function for Debye type dipole and fractional 
Debye type dipole and it is found to be:  

<µi>=µiL(zi), L(zi)=coth(zi)-1/zi                                              (8)

where zi=µiE/(kBT), E is external applied electric 
field, the symbols <> stand for ensemble average for the  
dipoles and µi stands for the dipoles G0, G+ and G−. The 
statistical distribution of irreversible processes follows the 
Boltzmann factor exp[-(Ui/kBT)], Ui=Gicos(θi)E, where the 
energy of G0, is redistributed through, G−, and G+, such 
that total energy is conserved, and θi is angle between 
dipole moment and E. In Fig.1, in the right panel, for 
zi>>1 the L(zi)=1-1/zi and approaches to one, however, 
for low field limit zi<<1, the linear regime L(zi)=(1/3)zi 
and saturation depends on fractional Debye type dipole 
strength gd. The energy and moment of the dipole G− and 
G+ is shifted with respect to G0, in equal magnitude, and 
the total energy and moment of the system is conserved. 
Since, the energy of Debye dipole G0 is redistributed 
through the fractional Debye type dipole pair G±, the 
dielectric loss spectra of G± spreads with respect Debye 
type dipole G0 dielectric loss spectra.    

3.2 Dielectric and relaxation functions for Debye type 
dipole G0 

Debye type dipole dielectric function provides 
unique information pertaining to the molecular process 
of matter, structure, chemical composition. The Debye 
relaxation function and Debye dielectric function for the 
non-interacting Debye type dipole G0 is the earliest known 
functions for the description of dielectric relaxation process 
and it can be obtained Laplace transform of negative 
derivative of dielectric relaxation function and it is found 
to be: 
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limits. The normalized Debye function Eq. (9a) has 
dielectric loss peak ωτD=tan(π/4)=1, which is symmetric 
on a log-log plot having slope 1 on the left side and -1 on 
the right side of loss peak respectively and has full width 
at half maximum (FWHM) of 1.144 decades [10].   

3.3  Dielectric and relaxation functions for the fractional 
Debye type dipole G− 

The complex dielectric function for the fractional 
Debye type dipole G−=gdG0 is obtained by incorporating 
the consequence of −G=(1-gd)G0 on G0, where
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complex dielectric functions are obtained for the fractional Debye type dipole G�=gdG0 by changing the Laplace 

transform variables    and    ,    as   ,    ,  , 
                            (10a)                     ,     ,  0<gd<1, 

                   ,           (10b) 

where          ,                   (10c) 

      

is the dielectric strength of G� which is differ from Debye type dielectric strength,   and  are the high and low 
external frequency dielectric limits respectively, N is G� dipole density. This is similar to CC type complex 

dielectric function [3], however,   is different from   since number density N and average dipole 

strength are altered by the manifestation of ‘many-particle’ like intermolecular interaction mechanism. The 
fractional Debye type dipole strength indicate strength of interaction in terms of exponent when 0<gd<1, and for the 
Debye type dipole process, gd=1 and it is a manifestation of ‘single-particle’ like molecular interaction mechanism. 
          
3.4  Dielectric and relaxation functions for the fractional Debye type dipole G+. 

  

 The complex dielectric function for fractional Debye type dipole G+=gdG0 is obtained by incorporating the 
consequence of +G=(1-gd)G0 on G0, where  is the Debye type dipole complex dielectric function. The 
consequence of G on the Debye type dielectric function and complex dielectric function is shifting of the Debye 

type dipole relaxation term , and  by a factor of ,  and hence the 
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strength are altered by the manifestation of ‘many-particle’ like intermolecular interaction mechanism. The 
fractional Debye type dipole strength indicate strength of interaction in terms of exponent when 0<gd<1, and for the 
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is the dielectric strength of G� which is differ from Debye type dielectric strength,   and  are the high and low 
external frequency dielectric limits respectively, N is G� dipole density. This is similar to CC type complex 

dielectric function [3], however,   is different from   since number density N and average dipole 

strength are altered by the manifestation of ‘many-particle’ like intermolecular interaction mechanism. The 
fractional Debye type dipole strength indicate strength of interaction in terms of exponent when 0<gd<1, and for the 
Debye type dipole process, gd=1 and it is a manifestation of ‘single-particle’ like molecular interaction mechanism. 
          
3.4  Dielectric and relaxation functions for the fractional Debye type dipole G+. 

  

 The complex dielectric function for fractional Debye type dipole G+=gdG0 is obtained by incorporating the 
consequence of +G=(1-gd)G0 on G0, where  is the Debye type dipole complex dielectric function. The 
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fractional Debye type dipole strength indicate strength of interaction in terms of exponent when 0<gd<1, and for the 
Debye type dipole process, gd=1 and it is a manifestation of ‘single-particle’ like molecular interaction mechanism. 
          
3.4  Dielectric and relaxation functions for the fractional Debye type dipole G+. 
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is the dielectric strength of G+ which is differ from dielectric strength of G�,  and  are the high and low 
external frequency permittivity limits respectively, N is G+ dipole density. Equation (11b) is completely different 
from CC type complex dielectric function and it is second consecutive secondary fractional Debye type dipole 

process dielectric function related to Debye type dipole dielectric relaxation process. The   is different from  is different from , since 
number density N and average dipole strength are altered 
by the manifestation of ‘many-particle’ intermolecular 
interaction mechanism. The fractional Debye type dipole 
strength indicate strength of interaction in terms of 
exponent 0<gd<1.  

3.5  Unique non-Debye relaxation and the energy 
criterion

We have shown unique NDR process in Eqs. (9)-(11) 
both in  frequency-time domains consists of (a) primary 
Debye type dipole process dielectric response  and and (b) 
two consecutive secondary fractional Debye type dipole 
processes dielectric response and , and  and containing 
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the primary process in both the consecutive secondary 
processes, where total energy loss of Debye type dipole 
process and total Debye type dipole moments are 
conserved. Energy criterion for proposed model is shown 
in terms energy loss  and energy storage  of G0, G−, and 
G+. For the dipole density N of Debye type dipoles G0 
(absence of dipole-dipole interactions) the energy criterion 
is given by classical case of Debye dielectric response, and 
the ratio of energy loss and energy storage is obtained by 
Eq. (9a) as:    

9 
 

  

[𝑖�(𝑡)]𝑮+ ∝ [𝜙�(𝑡)]𝑮+ ∝ 𝑒𝑥𝑝 �− � 𝑡
𝜏�
�
�−��� ∝ 𝑒𝑥𝑝 �− �𝑇Γ�𝑮+

�,                (11a)                  

(𝑇)𝑮+ = 𝑡�−�� , (Γ)𝑮− = 𝜏�
�−��,  0<gd<1, 

 
[𝜖�∗(𝜔)]𝑮+ = (∆𝜖)𝑮+

1+𝑖��(𝜔𝜏�)�−�� = � ��
1+�Γ�𝑮+

, (𝑠)𝑮+ = (𝒔)𝑮0
((−𝒔)−(1−��))𝑮0

, (Γ)𝑮+ = 𝜏�
�� , 𝑠 = 𝑖𝜔, (11b)  
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(∆𝜖)𝑮+ = (𝜖𝑠 − 𝜖�)𝑮+ = 𝑁

�
�+�

�𝜖0��𝑇
− 𝜖�,                 (11c)   

      
is the dielectric strength of G+ which is differ from dielectric strength of G, 𝜖𝑠 and 𝜖� are 

the high and low external frequency permittivity limits respectively, N is G+ dipole density. 

Equation (11b) is completely different from CC type complex dielectric function and it is 

second consecutive secondary fractional Debye type dipole process dielectric function related 

to Debye type dipole dielectric relaxation process. The (∆𝜖)𝑮+ is different from (∆𝜖)𝑮0, since 

number density N and average dipole strength are altered by the manifestation of ‘many-

particle’ intermolecular interaction mechanism. The fractional Debye type dipole strength 

indicate strength of interaction in terms of exponent 0<gd<1.   
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��(𝜔)
𝜖�� (𝜔)�𝑮0
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 (12)

where the real and imaginary parts of 

 , since number density N and average dipole strength are altered by the manifestation of ‘many-particle’ 

intermolecular interaction mechanism. The fractional Debye type dipole strength indicate strength of interaction in 
terms of exponent 0<gd<1.   
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As explained earlier, Debye type dipole-dipole 
molecular interaction and their evolution transform the N 
dipoles into N/2 dipoles of G− and N/2 dipoles of G+ by 
distributing the Debye type dipole energy and moment, 
where the total Debye type dipole moment and energy is 
conserved in the processes. For the fractional type Debye 
type dipoles G−, the energy criterion is similar to the 
classical case of Debye dielectric response result with a 
dispersion different from classical case of Debye dielectric 
response and the ratio of energy loss and energy storage 
is obtained by using Eq. (10b) as:
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 (17)

The proposed model is a coupled form Debye type 
dipole and fractional Debye type dipole processes and the 
primary relaxation time is Debye type dipole relaxation 
time, and it is designated as τD, where the exponent gd=1, 
and when 0<gd<1, the relaxation time is designated as τd. 
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Fig. 2: Polarization relaxation function for the Debye type dipole G0 
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gd=0.6, and 0.4 as red dashed and blue dotted lines and green thick and thin lines are sum of fractional Debye type 
dipole polarization for gd=0.6 and 0.4. Exactly similar features are observed in the frequency-domain dielectric 

response. The red arrow indicates Debye relaxation time (1s). The red dots indicate slow relaxation time  and blue 

dots indicate fast relaxation time  for gd=0.6, and 0.4 respectively.  These time scales are defined as NDR times 

due to the fractional Debye type dipole processes and it is dynamically correlated to the Debye type dipole 

relaxation time �D. The right panel shows NDR times  and  as function interaction strength gd based on Eqs. 

(18) & (19).   
 

The salient features of slow and fast relaxation time scales are (a) the shift in Debye type relaxation time �D 
in equal magnitude on both side of Debye relaxation time (b) the magnitude of the shift in time scale depends on 
strength of fractional Debye type dipole in terms 0<gd<1, and smaller the magnitude gd, stronger is the interaction 
strength and larger is the shifts in slow and fast relaxation times. (c) In the frequency-domain, the slow and fast 
relaxation times belong to left side and right side of Debye loss peak respectively for given gd and vice-versa in the 
time-domain Debye type polarization. These are novel result on the relaxation dynamics of the proposed model.  
 

When the dielectric loss spectra has more than one process loss peak contributions, like, high frequency 
loss peak �, in addition to low frequency loss peak �, then the similar fractional Debye type contribution process is 
considered for the loss peak �. If the dielectric loss spectra has ‘n’ number fractional Debye type dipole processes 
and if there is loss contribution due dc conductivity �dc, as observed in several glass forming alcohols, then the 
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processes contributing to the complex dielectric and polarization relaxation with their respective Debye type dipole 
and fractional Debye type dipole processes. In a nutshell, in a molecular level, for ‘n’ number of Debye type and 
their corresponding molecular level interaction initiated fractional Debye dipoles, the polarization mechanism and 
their dielectric function is found to be:      ,                (22) 
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where ‘n’ represents n number of unique NDR processes having n number of temporal and spatial scales due to the n 
number of Debye type dipole and their respective fractional Debye type polarization relaxation processes.   

 
The relaxation time of glass formers shows a deviation from Arrhenius law and it is parameterized with 

Vogel-Fulcher-Tamman (VFT) equation [21]:  
 

(�d)n=(�0exp(A0T0/(T-T0)))n, for T > Tg,                  (25) 
 
where n=1, 2, …,  T0 is the VFT approximation of the ideal glass transition temperature, A0 is the strength 
parameter, �0 is a pre-factor of the order inverse phonon frequency and further characterized based on fragility index 
[21],  

mp=log10(e)(A0(T0/Tg)(1�T0/Tg)
-2)n,                (26) 

where Arrhenius equation is   
(�d)n=(�0exp(Ea/kBT))n,                (27)  

with Ea is activation energy. The relaxation parameters resulting from the fits are shown and the relaxation times are 
checked for Arrhenius or Vogel–Fulcher–Tammann (VFT) behavior. 
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 as function interaction strength gd based 
on Eqs. (18) & (19). 

3.6 Slow and fast relaxation times in the fractional Debye 
type dipole process 

According to the proposed model both Debye type 
and fractional Debye dipole processes have relaxation time 
τD=τd and it is a primary relaxation time.   Then,   what is 
the relaxation time for the fractional Debye type dipole 
process? A careful analysis of Debye type dipole and the 
fractional Debye type dipole energy criterion provided two 
relaxation time scales correlated to primary relaxation time 
τD. By equating Debye type dipole process dielectric loss 
energy to fractional Debye type dipole process dielectric 
loss energy,
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time-domain Debye type polarization. These are novel result on the relaxation dynamics of the proposed model.  
 

When the dielectric loss spectra has more than one process loss peak contributions, like, high frequency 
loss peak �, in addition to low frequency loss peak �, then the similar fractional Debye type contribution process is 
considered for the loss peak �. If the dielectric loss spectra has ‘n’ number fractional Debye type dipole processes 
and if there is loss contribution due dc conductivity �dc, as observed in several glass forming alcohols, then the 
complex dielectric function and relaxation function become: 
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Here ‘n’ may be treated as number of subunit or subgroup or subunit of cluster of molecular level polarization 
processes contributing to the complex dielectric and polarization relaxation with their respective Debye type dipole 
and fractional Debye type dipole processes. In a nutshell, in a molecular level, for ‘n’ number of Debye type and 
their corresponding molecular level interaction initiated fractional Debye dipoles, the polarization mechanism and 
their dielectric function is found to be:      ,                (22) 

                   (23) 

    ,               (24) 

where ‘n’ represents n number of unique NDR processes having n number of temporal and spatial scales due to the n 
number of Debye type dipole and their respective fractional Debye type polarization relaxation processes.   

 
The relaxation time of glass formers shows a deviation from Arrhenius law and it is parameterized with 

Vogel-Fulcher-Tamman (VFT) equation [21]:  
 

(�d)n=(�0exp(A0T0/(T-T0)))n, for T > Tg,                  (25) 
 
where n=1, 2, …,  T0 is the VFT approximation of the ideal glass transition temperature, A0 is the strength 
parameter, �0 is a pre-factor of the order inverse phonon frequency and further characterized based on fragility index 
[21],  

mp=log10(e)(A0(T0/Tg)(1�T0/Tg)
-2)n,                (26) 

where Arrhenius equation is   
(�d)n=(�0exp(Ea/kBT))n,                (27)  

with Ea is activation energy. The relaxation parameters resulting from the fits are shown and the relaxation times are 
checked for Arrhenius or Vogel–Fulcher–Tammann (VFT) behavior. 
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where ‘n’ represents n number of unique NDR 
processes having n number of temporal and spatial scales 
due to the n number of Debye type dipole and their 
respective fractional Debye type polarization relaxation 
processes.  

The relaxation time of glass formers shows a deviation 
from Arrhenius law and it is parameterized with Vogel-
Fulcher-Tamman (VFT) equation [21]: 

(τd)n=(τ0exp(A0T0/(T-T0)))n,	 for T > Tg,                   (25)

where n=1, 2, …,  T0 is the VFT approximation of 
the ideal glass transition temperature, A0 is the strength 
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FIGURE 2. Polarization relaxation function for the Debye type dipole G0 polarization 
(dashed black line) and fractional Debye type dipole G (red small dotted line gd=0.6), 
G+ (blue bigger dotted line, gd=0.4) and G+G+ (green thick line gd=0.4, thin line gd=0.6) 
polarization (left panel). The red arrow indicates Debye relaxation time (1s), and the 
red dots indicate slow relaxation time 𝝉𝒔∗ and blue dots indicate fast relaxation time 𝝉𝒇∗  
for gd=0.6, 0.4 respectively.  These time scales are defined as NDR times due to the 
fractional Debye type dipole processes and it is dynamically correlated to the Debye 
type dipole relaxation time D. The right panel shows NDR times 𝝉𝒔∗ and 𝝉𝒇∗  as function 
interaction strength gd based on Eqs. (18) & (19).   
 

2.6 Slow and fast relaxation times in the fractional Debye type dipole process  
 

According to the proposed model both Debye type and fractional Debye dipole 

processes have relaxation time D=d and it is a primary relaxation time.   Then,   what is the 

relaxation time for the fractional Debye type dipole process? A careful analysis of Debye 

type dipole and the fractional Debye type dipole energy criterion provided two relaxation 

time scales correlated to primary relaxation time D. By equating Debye type dipole process 

dielectric loss energy to fractional Debye type dipole process dielectric loss energy, 

 
 [𝜖���(𝜔)]𝑮0 = [𝜖���(𝜔)]𝑮−  or [𝜖���(𝜔)]𝑮0 = [𝜖���(𝜔)]𝑮+  or  [𝜖���(𝜔)]𝑮0 = [𝜖���(𝜔)]𝑮− + [𝜖���(𝜔)]𝑮+ 
 
at the loss peak =1/d, we obtained slow and fast relaxation time with respect to primary 

relaxation time D respectively as:  

𝜏𝑠∗ = 1 𝜔𝑠
∗⁄ = 𝜏�(𝑐 + √𝑐� − 1), 0<gd<1, 𝜏𝑠∗=D, gd=1,            (18) 

 
𝜏�∗ = 1 𝜔�

∗⁄ = 𝜏�(𝑐 − √𝑐� − 1), 0<gd<1, 𝜏�∗=D, gd=1,             (19) 

where c=cot(gd/4) is the dielectric loss of G0 or G or G+ or G+G+ at the loss peak =1/d.  

The polarization relaxation for the Debye type dipole G0 (dashed black) and fractional Debye 
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parameter, τ0 is a pre-factor of the order inverse phonon 
frequency and further characterized based on fragility 
index [21], 

mp=log10(e)(A0(T0/Tg)(1−T0/Tg)-2)n, 	                                     (26)

where Arrhenius equation is 	

(τd)n=(τ0exp(Ea/kBT))n,                                                        (27) 

with Ea is activation energy. The relaxation parameters 
resulting from the fits are shown and the relaxation times 
are checked for Arrhenius or Vogel–Fulcher–Tammann 
(VFT) behavior.

3.7 Comparison with existing non-Debye relaxation   
In Fig. 3, in the left panel, the existing NDR functions 

KWW (numerical Fourier transform for βKWW=0.6), CC, 
CD, HN, UDR and proposed GG function are shown 
in double logarithmic plots. The empirical form of CC 
dielectric function has a slope (1-αCC) below the loss peak 
and -(1-αCC) above the loss peak and loss curve is symmetric 
about the loss peak.   

uninterpreted quantity and slope of the dielectric loss 
below the loss peak is always one and above loss peak is 
-βCD. The HN dielectric function was suggested when the 
slopes are different on both sides of dielectric loss peak, 
HN exponents (1-αHN) and βHN are physically uninterpreted 
quantities. However, the exponents of KWW, CC, CD 
and HN are used to describe distribution relaxation in 
NDR process. In Jonscher’s UDR, the exponents 0<m<1 
and 0<n<1 change the slopes of the dielectric loss curve 
asymmetrically with respect to loss peak having sum of two 
processes with exponents m and n. The energy criterion 
has been given for process involving only the exponent n 
and it is tentatively modeled in terms of partial screening 
mechanism. The time domain polarization functions for 
these existing empirical form of NDR are still a mystery, 
however, power laws and KWW function are approximated 
as possible polarization functions. It is clear from left panel 
of Fig. 3, the slop of proposed GG dielectric function in 
double logarithmic plots have completely different features 
when compared with existing empirical form of dielectric 
functions. The dielectric loss slope of sum of fractional 
Debye type dipole process varies between gd to 2-gd below 
and above the loss peak and also depends on dielectric 
strength 
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4.  Dielectric loss data analysis
4.1  1-Cyanoadamantane

The dielectric loss data of 1-cyanoadamantane 
(C10H15CN, 1-CNA) are taken from Lunkenheimer’s 
research group [22,23].  1-CNA is a simple prototypical 
plastic crystal with carbon atoms form a cage, the free 
bonds being saturated by hydrogen atoms and one 
cyano-group.  Below the melting temperature (Tm=458 K) 
the plastic phase is formed and at T=280 K orientational 
order occurs. The dielectric loss data and schematic view 
of molecular structure as insets are shown on the top panel 
in Fig. 4 for the plastic-crystalline phase of 1-CNA. The 
data are shown as black dots. The data analysis covered 
on the plastic-crystalline phase having wide measured 
frequency range up to 20 GHz. Lunkenheimer’s research 
group have performed numerical Fourier transform of 
KWW function for the temperature dependent data of loss 
data of 1-CNA and found worse fit and hence they rejected 
KWW method. Further, the 1-CNA loss data were analyzed 
using empirical form of CD dielectric functions. For all the 
temperatures, the loss data did not fit well around two 
decades at high frequency region.   

Fig. 3: In the left panel, a comparison of frequency domain double 
logarithm plots of proposed unique NDR function (n=1) with existing 
NDR functions KWW (numerical Fourier transform for βKWW=0.6), CC, 
CD, HN, and UDR. The slope of lines to which peaks is asymptotic. 
Plots are vertically separated by 1.5 units for clarity. The dashed line 
is Debye type dielectric loss. The right panel shows further details of 
proposed dielectric loss contribution for Debye type dipole G0 and the 
fractional Debye type dipoles G−, G+ and their sum G−+G+. The slopes 
varies from gd to 2-gd on left side of the loss peak and -gd to -(2-gd) on 
right side of the loss peak The red and blue dots on the lines show the 
slow and fast relaxation times for gd=0.4.        

The fractional exponent (1-αCC) is explained in terms 
equivalent circuit with impedance polarization “denoting 
the storage of energy in addition to dissipation energy 
in the mechanism of molecular interaction responsible 
for dispersion”. The empirical function CD accounts for 
asymmetry in the dielectric loss observed several glass 
forming alcohols, however, the exponent βCD is physically 
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The dielectric loss data of 
research group [22,23].  1-CNA is a simple prototypical plastic crystal with carbon atoms form a cage, the free 
bonds being saturated by hydrogen atoms and one cyano
plastic phase is formed and at T=280 K orientational order occurs. The dielectric loss data and schematic view of 
molecular structure as insets are shown on the t
data are shown as black dots. The data analysis covered on the plastic
frequency range up to 20 GHz. Lunkenheimer’s research group have performed nume
KWW function for the temperature dependent data of loss data of 
rejected KWW method. Further, the 
functions. For all the temperatures, the loss data did not fit well around two decades at high frequency region.   
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Fig. 4: Fit results of dielectric loss of a simple van der Waals system plastic crystal 
1-cyanoadamentane (1-CNA) for T=280K shown on the top panel, where number of subunits 
of molecular process n contributed to dielectric loss is 1.  The dashed red and blue lines are 
Debye type dipole dielectric loss G0 and continuous red and blue lines and shades are fractional 
Debye type dipole G−, and G+ dielectric loss and green line and shade is sum of dipoles G−+G+ 
dielectric loss. The estimates of fit parameters (FP) and standard error (SE) are shown as an 
attachment. The panel in the middle shows temperature dependent loss data of 1-CNA with 
interaction strength gd. The G− and G+ dipole dielectric loss contributions are shown for 
T=260K and 420K. The double headed arrow indicates primary relaxation time. Arrhenius 
type temperature dependence Debye type relaxation time, slow and fast relaxation times are 
shown in right side of middle panel. The bottom panel shows dielectric strength and interaction 
strength as function of temperatures.

lines and shades are fractional Debye 
type dipole relaxation process where 
0<gd<1. 

In Fig. 4, the middle panel, the 
temperature dependence data are further 
analyzed for wide range of frequency and 
temperature dependent dielectric loss 
peaks are shown in form of Arrhenius 
plot. The straight line fit equation, 
slope and attempt frequency 1/τ0 are 
indicated in Fig. 4.   The slow and fast 
relaxation times are shown with Debye 
type relaxation time.  The bottom panel 
in Fig. 4 shows dielectric strengths 
and interaction strength gd as a function 
of temperature. The proposed model 
shows excellent fit for the entire region 
of frequency and provides new physical 
insight for the molecular motion in 
terms dipole-dipole interaction with the 
concept of Debye type and fractional 
Debye type dipole polarization.    

4.2  Dielectric loss data analysis of super-
cooled glycerol

The dielectric loss data of super-
cooled glycerol (C3H5(OH)3) are taken 
from Lunkenheimer’s research group 
[24]. The dielectric spectra and schematic 
view of molecular structure as insets 
are shown in Fig. 5 for the super-cooled 
phase of glycerol on the top panel to 
demonstrate the typical analysis of 
dielectric loss data based on Eq. (20). The 
glass transition temperature of glycerol 
Tg is 184K. In glycerol system σdc=0, and 
the number of subunits n contributing to 
the dielectric loss is found to be 2.  One 

The fit result based on Eq. (20) is shown in Fig. 4 for 
1-CNA loss data, where σdc=0, and n is found to be one. 
The estimate of fit parameters (FP) and standard errors (SE) 
attached in Fig. 4 of to panel. With simple orientational 
order, the Debye type dipole G0 and the interaction 
originated fractional Debye type dipoles G−=gdG0 and 
G+=(2-gd)G0, with gd=0.701 and their respective dielectric 
strength shows excellent fitting. During the molecular 
motion, the instantaneous transfer of Debye type dipole 
of G0 of 1-CNA molecule is incomplete by a factor (1-gd)
G0, and hence the fractional Debye type dipoles G− and 
G+ relaxation process initiated and fractional Debye type 
dipole takes over and resulting a spread in Debye type 
dipole dielectric spectra as shown in Fig. 4. The Debye 
type dipole are shown as dashed lines and the continuous 

of the challenging problems in the dielectric loss spectra is 
the excess wing in some of the glass forming systems and 
it is a common-feature without well resolved β relaxation. 
Lunkenheimer’s research group performed high precision 
aging experiments lasting up to five weeks, and they have 
shown the equilibrium spectra below Tg, showing up 
excess wing (long tail above the α peak) as a second power 
law at high frequencies, developed into a shoulder. Their 
results strongly suggested that the excess wing, observed 
in a variety of glass formers, is the high-frequency flank 
of a β relaxation.

In the present work, we have analyzed the dielectric 
loss spectra of glass-forming glycerol at temperature above 
and below Tg based on the proposed model. Typical result 
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Fig. 5: Fit results of dielectric loss of hydrogen bonded super-cooled 
glycerol is shown on the top panel, where number of subunits of molecular 
processes n contributed to the dielectric loss is 2.  The dashed red and blue 
lines are Debye type dipole (G0)1 and (G0)2 dielectric loss,  and continuous 
red and blue lines and shades are fractional Debye type dipole (G−+G+)1 
and (G−+G+)2 dielectric loss and green line and shade is sum of dipoles 
(G−+G+)1+(G−+G+)2  dielectric loss. The estimates of fit parameters (FP) 
and standard error (SE) are shown as an attachment. The panel in the 
middle shows temperature dependent loss data of glycerol. For T=195K, 
black line is Debye type dipole (G0)1+(G0)2 dielectric loss, the dipole 
(G−+G+)1 and (G−+G+)2 loss contribution are shown as red and blue 
dashed line. The VFT type temperature dependence relaxation time is 
shown in right side of middle panel with slow and fast relaxation times. 
The bottom panel shows dielectric strength and interaction strength as 
function temperature for glycerol for n=2.

of dielectric loss data of glycerol at 204K is shown in Fig. 5. 
The number of subunits n=2 is obtained for the dielectric 
loss data analysis and estimates of fit parameters (FP) and 
their standard errors (SE) are attached in Fig.5. Excellent fit 
parameters and fits are obtained for n=2, where there are 
two closely spaced times scales of motions are observed as 
two different Debye type dipole moments (G0)1 and (G0)2 
with their corresponding fractional Debye type dipole 
moments (gdG0)1 and ((2-gd)G0)1, (gdG0)2 and ((2-gd)G0)2 
where dipole-dipole interaction strengths are (gd)1=0.264 

and (gd)2=0.670 and two different Debye type relaxation 
times are (τd)1=2.35x10-2(s), (τd)2=7.94x10-3(s). Both Debye 
type dipoles and fractional Debye type dipoles and their 
sums are shown as dashed lines and continuous lies. The 
proposed model predicts the existence of mysterious high 
frequency flank of a α relaxation, though it is not well 
resolved in the dielectric loss data explicitly.

Similar fitting procedure is followed for other 
temperatures [24] and result are reported in the middle 
panel of Fig. 5. The double arrow around loss peak indicates 
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position of relaxation time (τd)1 and (τd)2. The temperature 
dependence of (τd)1 and (τd)2 shows VFT features and the 
VFT fit parameters and fragility are obtained based on 
Eqs. (25)-(26) as: 

(τ0)1=10-12.84±0.48, (A0)1=11.64±1.09, (T0)1=140.79±2.12, and the 
fragility (mp)1=70.2,

(τ0)2=10-14.53±0.54, (A0)2=15.16±1.51, (T0)2=133.42±2.54, and the 
fragility (mp)2=63.2.

The dielectric strength and interaction strength 
obtained based of fit results of dielectric loss data are 
shown in bottom panel in Fig.5 for n=1, and 2. The 
interaction strength for the subunit n=1 of the molecular 
process is found to be much stronger than n=2, and hence 
the excess wing or long tail in the dielectric loss is due 
the slow α process and it is clearly shown in Fig. 5, for 
T=195 as red dashed line in middle left panel. Figure 6 
shows the compiled dielectric loss data of ten different 
molecular systems based on proposed model at different 
temperatures. These data were collected from literature 
and analysed based on the proposed dielectric Eq. (20) and 
results are shown in Fig. 6. The list below shows dielectric 
system, temperature in Kelvin, reference, number of 

subunits n associated with molecular process contributing 
to dielectric loss, interaction strength and type of relaxation 
process:  

(1)	 Propylene carbonate@153 [25], (G±)1+(G±)2+(G±)3, 
(gd)1=0.674, (gd)2=0.132, (gd)3= 0.654, α, β and Boson 
peak (three pairs of (G±) loss show fifteen decades of 
frequency dependence!);

(2)	 TriPGG@193 [26], (G±)1+(G−)2, (gd)1=0.549,  (gd)2=0.277, 
α and β; 

(3)	 Ketoprofen@272 [13], (G−)1+(G−)2+(G−)3, (gd)1=0.631, 
(gd)2=0.893, (gd)3=0.204, α, β and γ;

(4)	 1-propanol@107.7 [27], (G−)1+(G−)2+(G−)3, (gd)1=0.997, 
(gd)2=0.617, (gd)3=0.411, Debye, α and β;

(5)	 Magnatite@20 [28], (G−)1+(G−)2, (gd)1=0.433, (gd)2 =0.698, 
α and β. The real part of  is shown as filled plot 
based on Eqs. (18) & (19).

(6)	 Propylene carbonate@160 [24], (G±)1+(G±)2, (gd)1=0.235, 
(gd)2=0.667, α and β;

(7)	 Ortho-carborane@163 (o-CA) [23], (G−)1+(G±)2, (gd)1=0.882, 
(gd)2=0.450, α and β;    

(8)	 Pentachlornitrobenzene@350 [23] (gd)1=1.0, (gd)2=0.805, α 
and β; 

(9)	 Meta-carborane@252 (m-CA) [23], (G−)1+(G−)2, (gd)1= 1.0, 
(gd)2=0.787, α and β; 

(10) Ethanol@231 [29], (G−)1, (gd)1=0.943, α; 

(11) Glycerol@363 [25], (G±)1+(G−)2, (gd)1=0.557, (gd)2=1.0, α 
and β. 	

5. Summary and conclusions
The existing time-honoured NDR functions with 

their exponents, βKWW, αCC, βCD, (αHN, βHN) and (m, n) were 
introduced 163, 76, 66, 50, and 43 years ago respectively. 
Still their use in dielectric loss analysis is piecemeal 
approach tailored to individual materials and often highly 
arbitrary.  The proposed Eqs. (20)-(24) have polarization 
relaxation dynamics of Debye type dipole G0 and fractional 
Debye type dipoles ±G, and G±, where ±G=(1-gd)G0, 
G−=G0−(1-gd)G0=gdG0, G+=G0+(1-gd)G0=(2-gd)G0 and 
these dipoles will open a window on one of Nature’s best-
kept secrets of NDR. The proposed model will heighten 
the understanding of NDR and physical insight for the 
dielectric loss of α, β and γ relaxations, excess wing, and 
closely related ac conductivity and mechanical relaxation. 
Hopefully, the proposed fractional Debye type model 
will be able to unify and encompass the existing NDR 
approach with an amendments.  The universal Debye 
type dipole relaxation and its associated fractional Debye 
type dipole relaxation dynamics with redistribution and 

Fig. 6: A compilation of dielectric loss data range of ten materials is 
shown covering frequency range of 15 decades. The schematic structure 
of these molecules with serial numbers and temperature of loss data are 
shown. (1) Propylene carbonate@153 (2) TriPGG (3) Ketoprofen   (4) 
1-propanol (5) Magnatite (6) Propylene carbonate@160 (7) Ortho-
carborane (8) Pentachloro-nitrobenzene (9) Meta-carborane (10) 
Ethanol (11) Glycerol. For each molecular system the number of subunits 
n of molecular processes contributing to the dielectric loss is indicated. 
The double headed arrow indicates dielectric loss contribution from both 
G− and G+, and single headed arrow indicates dielectric loss contribution 
from either G− or G+. Among G− and G+ the dielectric loss contributions, 
with respect to temperature variation, the dominant contribution is 
found to be G− as shown in Langevin function Fig. 1.  
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conservation of moment and energy in the storage and 
dissipation processes in the dielectric response are too 
striking and believed that one underlying principle of 
“molecular level many-body interactions between its 
constituent parts” governs the response of condensed 
matter to electromagnetic fields.  
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